
Xi-CAM
Release 0+unknown

Ronald J. Pandolfi

Nov 14, 2022

CONTENTS

1 Getting Started 3

2 Developer Documentation 5

3 Links 41

4 Indices and tables 43

i

ii

Xi-CAM, Release 0+unknown

The Xi-CAM package is a plugin-based framework and graphical user interface (GUI) application for synchrotron data
management, acquisition, visualization, and analysis. Support for a variety of techniques is provided through its plugin
architecture.

CONTENTS 1

Xi-CAM, Release 0+unknown

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

Before starting to develop plugins, you will need to install Xi-CAM and some of its dependencies.

Follow the QuickStart guide to get started with installation and exploring an example Xi-CAM plugin (covers GUIPlu-
gin, Workflow, and OperationPlugins).

For more detailed documentation, you may want to visit the following:

• GUIPlugin documentation

• OperationPlugin documentation

• Workflow documentation

The Resources section has useful links to tutorials, examples, and documentation that can help with developing Xi-
CAM plugins.

3

quickstart.html
gui-plugin.html
operation-plugin.html
workflow.html
resources.html

Xi-CAM, Release 0+unknown

4 Chapter 1. Getting Started

CHAPTER

TWO

DEVELOPER DOCUMENTATION

2.1 QuickStart Guide

This is a quick-start guide that will help you install Xi-CAM and explore an example plugin that you can experiment
with.

This guide does not explore the implementation of the plugin in too much detail. For more in-depth documentation for
developing plugins from scratch, see:

2.1.1 GUIPlugin Documentation

This documentation provides information on GUIPlugins and GUILayouts to help with designing your own plugins for
Xi-CAM. API reference documentation is also included at the bottom.

If you are new to developing Xi-CAM plugins, it is recommended that you follow the quick-start documentation first.

For more general development resources, see the resources documentation.

What Is A GUIPlugin?

A GUIPlugin is an interactive user-facing plugin in Xi-CAM. It can be used to visualize and analyze data.

GUIPlugins make use of the qtpy Python package for interactive GUI components. See the resources documentation
for more information.

Where is GUIPlugin?

xicam.plugins.guiplugin

What Does a GUIPlugin Look Like?

First, let’s look at what Xi-CAM looks like when you first load it:

Main window of Xi-CAM when running xicam. Note that there are three installed GUIPlugins here; if you haven’t
installed any plugins, you won’t see any listed.

As you can see, the main window of Xi-CAM after it has finished loading shows any installed GUIPlugins, a citation /
references widget, a preview widget, and a data browser widget. The data browser widget can be used to load data into
a GUIPlugin. The data preview widget can be used to “preview” data before loading it.

5

Xi-CAM, Release 0+unknown

6 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

It is important to keep in mind a few concepts for GUIPlugins:

• A GUIPlugin can have one or more stages.

• Each stage is defined with a GUILayout.

• A GUILayout is defined with a widget (or multiple widgets).

These concepts are explored in more detail later in this document.

How Do I Create a GUIPlugin?

To create a GUIPlugin, you will need:

• a derived class of GUIPlugin

• a setup.py file with a xicam.plugins.GUIPlugin entry point

Although you may structure your plugin’s code and support files as you like, we recommend using a cookiecutter
template that we have created for Xi-CAM’s GUIPlugin.

What is cookiecutter?

cookiecutter is a templating tool that can be used to interactively create python project. For more information, see
the cookiecutter documentation.

Install cookiecutter

In your active environment, you will need to pip install cookiecutter.

Run cookiecutter with the Xi-CAM GUIPlugin Template

Now, in the directory of your choice (the home directory, ~, should work if you are unsure), run the following:

cookiecutter https://github.com/Xi-CAM/Xi-cam.templates.GuiPlugin

This will download the template for creating a GUIPlugin, then present you with a series of prompts.

A prompt will look like prompt [default value]: . If you want to use the default value specified, hit the enter
key. Otherwise, respond to the prompt with the value you would like.

Here are the prompts with their descriptions:

This will create a python package with some files and code to get started developing a GUIPlugin. You can always
change the names of your plugin, package, etc. later by hand.

The GUIPlugin you created will be implemented in xicam.package_name/xicam/package_name/__init__.py.

For purposes of this documentation, we will refer to these values by their defaults.

2.1. QuickStart Guide 7

https://cookiecutter.readthedocs.io

Xi-CAM, Release 0+unknown

Installing Your GUIPlugin

When you create a new plugin package using cookiecutter, one of the files it generates is setup.py. This contains
meta-information about the package. When you run pip install of your package, it uses this information to create
a disribution.

setup.py also defines entry points, which Xi-CAM uses to find plugins.

For more information about entry points in Xi-CAM, see the following documentation.

Navigate to your created package directory and create an editable pip install:

cd xicam.my_plugin
pip install -e .

This tells pip install your file locally by looking at the setup.py file, and the -e allows you to make changes to your
code without having to reinstall.

If you change an entry point in setup.py, you must reinstall.

Selecting and Activating a GUIPlugin

We can activate any of the installed GUIPlugins by clicking on their name at the top. Let’s click on “My Plugin”:

Note that this plugin doesn’t do much yet; it simply displays the text “Stage 1. . . ” You can also click “Stage 2” at the
top, and you will see the text “Stage 2. . . ” in the center.

How is MyPlugin Implemented?

The code for MyPlugin is implemented in xicam.package_name/xicam/package_name/__init__.py.

from qtpy.QtWidgets import QLabel

from xicam.plugins import GUIPlugin, GUILayout

class MyPlugin(GUIPlugin):
Defines the name of the plugin (how it is displayed in Xi-CAM)
name = "My Plugin"

def __init__(self, *args, **kwargs):
Insert code here

Modify stages here
self.stages = {'Stage 1': GUILayout(QLabel("Stage 1...")),

"Stage 2": GUILayout(QLabel("Stage 2..."))}

Initialize the parent class, GUIPlugin
super(MyPlugin, self).__init__(*args, **kwargs)

Cookiecutter set up this starter code for us. We have a derived version of GUIPlugin, which we call MyPlugin. It has
the name “My Plugin”, which is how it will appear in the Xi-CAM GUI.

We then have an __init__ method to describe how to create a MyPlugin. Notice that there is a QLabel, which is
simply text, added into two GUILayouts. These layouts are then added to the interface via self.stages.

8 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

Fig. 1: MyPlugin’s interface.

2.1. QuickStart Guide 9

Xi-CAM, Release 0+unknown

What Is a Stage?

Visually, a stage is a stand-alone interface for a GUIPlugin. A GUIPlugin must have at least one stage but may have
multiple stages. With multiple stages, each stage has its own interface and each stage can be selected in the top bar of
Xi-CAM.

Stages for a GUIPlugin are accessible with self.stages. self.stages is a dictionary where each

• key is the name of the stage

• value is a GUILayouts

For example, we might define two stages as:

self.stages = {"A": GUILayout(QLabel("1")),
"B": GUILayout(QLabel("2"))}

This will look like:

The interface of a plugin named “My Plugin” with multiple stages, “A” and “B”. Note that “A” is currently selected,
so we see the label “1” in the middle of the window.

10 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

What Is a GUILayout?

A GUILayout is a layout used to describe how widgets should be organized in a stage in a GUIPlugin.

The layout corresponds to a 3x3 grid in the Xi-CAM main window, with the names center, left, right, lefttop, righttop,
leftbottom, rightbottom. These names correspond to the arguments you can pass when creating a GUILayout.

You must provide at least one widget, which will be the center widget.

2.1. QuickStart Guide 11

Xi-CAM, Release 0+unknown

What Is a QLabel?

QLabel is a Qt widget provided by the Qt backend Xi-CAM makes use of. It acts a widget that holds simple text.

For more information on Qt, see Qt for Python Documentation.

How Do I Load Data into My Plugin?

In order to load data into a GUIPlugin, you must:

• have access to or configure a databroker catalog

• re-implement appendCatalog in your GUIPlugin derived class

– this will need to have access to an internal widget to display the data

• have a GUIPlugin selected in Xi-CAM

Configuring a Databroker Catalog

For purposes of this documentation, we will be using a sample msgpack catalog and a starter catalog.yml file you can
download.

For general help about databroker, catalogs, and configuration, there is excellent documentation here:
https://nsls-ii.github.io/databroker/v2/index.html. Additional documentation about catalogs can be found here:
https://intake.readthedocs.io/en/latest/index.html

Download MD5
349497da-ead2-4015-8201-4719f8a2de69.msgpack 3a18341f570b100afbaff1c889e9b4f8
catalog.yml c14814b4537810f14300f8c8d5949285

After downloading these files, we will want to do three things:

1. Decide where to put our data and move it there

2. Update our catalog.yml paths to have a path directory the data is in

3. Move our catalog.yml to a place it can be discovered

Moving the msgpack Data

You can choose where you’d like to copy or move your data. For purposes of this guide, we will create a new directory
in our home called catalogs and move the downloaded msgpack file there.

Updating catalog.yml

Now that we’ve moved / copied our sample catalog msgpack file, we need to update our catalog.yml to tell it where
it can find that data.

We will want to add a line under paths in catalog.yml that is the complete file path to the catalogs directory we
added above.

12 Chapter 2. Developer Documentation

https://doc.qt.io/qtforpython/

Xi-CAM, Release 0+unknown

Making catalog.yml Discoverable

To know where we can put our catalog.yml file, we can run the following in a Python interpreter:

from databroker import catalog_search_path
print(catalog_search_path())

You can move the catalog.yml file in any of the paths listed. Note that typically there will be a more user-oriented
path and a more global system-level path for the catalogs to find. You can copy the catalog.yml file to either (or
both) path depending on how you want a machine set up.

Implementing appendCatalog

Let’s implement the appendCatalogmethod in MyPlugin so we can load the catalog. We will also be adding a widget
to view the loaded catalog.

Inside of the MyPlugin class (located in xicam/my_plugin/__init__.py), add the appendCatalog as follows:

from qtpy.QtWidgets import QLabel

from xicam.core.msg import logMessage
from xicam.plugins import GUILayout, GUIPlugin
from xicam.gui.widgets.imageviewmixins import CatalogView

class MyPlugin(GUIPlugin):
Define the name of the plugin (how it is displayed in Xi-CAM)
name = "My Plugin"

def __init__(self, *args, **kwargs):
self._catalog_viewer = CatalogView()
self._stream = "primary"
self._field = "img"

catalog_viewer_layout = GUILayout(self._catalog_viewer)

Modify stages here
self.stages = {"Stage 1": GUILayout(QLabel("Stage 1..."))}
self.stages = {"View Catalog": catalog_viewer_layout}

super(MyPlugin, self).__init__(*args, **kwargs)

def appendCatalog(self, catalog):
self._catalog_viewer.setCatalog(catalog, self._stream, self._field)
logMessage(f"Opening catalog with stream {self._stream} and field {self._field}.

→˓")

2.1. QuickStart Guide 13

Xi-CAM, Release 0+unknown

API Reference

2.1.2 OperationPlugin Documentation

This documentation provides information on the foundational aspects of the OperationPlugin class, as well as a more
detailed API reference.

If you are new to developing Xi-CAM plugins, it is recommended that you follow the quick-start documentation first.

For more general development resources, see the Resources page.

What Is an OperationPlugin?

An OperationPlugin can be thought of as a function with some extra annotations attached to it. When we want to define
an OperationPlugin, we simply need to define a Python function, then add some additional syntax to the function to
define things like inputs, outputs, descriptions of inputs/outputs, units, etc.

To achieve this, The OperationClass makes extensive use of Python decorators.

Where Is OperationPlugin?

xicam.plugins.operationplugin

What Does an OperationPlugin Look Like?

Let’s start off with a simple function that computes the square of its input:

def my_square(n):
return n**2

Now, let’s make this an OperationPlugin:

from xicam.plugins.operationplugin import operation, output_names

@operation
@output_names("square")
def my_square(n):

return n**2

That’s it!

Notice the two decorators here: @operation and @output_names.

The @operation says that this function is now a Xi-CAM OperationPlugin. Any input arguments for the function will
be the input names for the operation. In this case, our input is n. (This can actually be overwritten by using a different
decorator, @input_names, which is described later.)

The @output_names allows us to name our outputs, in this case, square. This will be useful when connecting multiple
operations together in a Workflow.

14 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

Default Input Values

If you want to provide your operation with default input values, you can use argument defaults in your function:

from xicam.plugins.operationplugin import operation, output_names

@operation
@output_names("square")
def my_square(n = 0):

return n**2

This provides this operation’s n input with a default value of 0.

Required and Highly-Used Decorators

In order to make a function an operation, the following decorators must be used:

• @operation – allows creation of operations from the function

• @output_names – defines the name of the output(s)

Additionally, although not required to for an operation, the following decorators are highly-recommended for use:

• @display_name – the name of the operation

• @describe_input – attach a description to the specified input (can be used multiple times)

• @describe_output – attach a description to the specified output (can be used multiple times)

Type Hinting (Optional)

With Python3 (3.5+), you can add type hinting to your code. In the context of Xi-CAM OperationPlugins, this can be
used to make your operation code a little easier to read.

Let’s use the my_square function we defined earlier in this operation:

from xicam.plugins.operationplugin import operation, output_names

@operation
@output_names("square")
def my_square(n: int) -> int:

return n**2

Note the n: int and the -> int: here. These suggest (but do not mandate) that the input be an integer, and the
output expected is an integer.

Again, these are not required, but they can help with readability and debugging your code.

For more information, see Python’s typing module.

2.1. QuickStart Guide 15

https://docs.python.org/3/library/typing.html

Xi-CAM, Release 0+unknown

Example

A simple division operation that returns both the quotient and remainder.

This illustrates the use of multiple input/output descriptions and multiple outputs.

from typing import Tuple
from xicam.plugins.operationplugin import describe_input, describe_output, display_name,␣
→˓operation, output_names

@operation
@output_names("quotient", "remainder")
@display_name("Division with Remainder")
@describe_input("dividend", "The number being divided.")
@describe_input("divisor", "The number to divide by.")
@describe_output("quotient", "The result of the division.")
@describe_output("remainder", "The remaining value.")
def my_divide(dividend: int, divisor: int = 1) -> Tuple[int, int]:

quotient = int(dividend // divisor)
remainder = dividend % divisor
return quotient, remainder

How Do I Use an OperationPlugin?

Now that we’ve defined an operation, how do we actually use it?

When we define an operation using the @operation decorator around a function, we are defining a new operation
class.

We can then create an operation object by using the syntax func(), where func is the name of the function in the
operation.

Let’s take our my_square operation (defined above) and create one:

from xicam.plugins.operationplugin import operation, output_names

@operation
@output_names("square")
def my_square(n):

return n**2

op = my_square()

Now that we have an operation object (instance), op, we can use it within a Workflow.

Let’s create a Workflow, add our operation to it, then execute it.

from xicam.core.execution import Workflow
from xicam.plugins.operationplugin import operation, output_names

@operation
@output_names("square")
def my_square(n):

return n**2

(continues on next page)

16 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

(continued from previous page)

op = my_square()
workflow = Workflow()
workflow.add_operation(op)
result = workflow.execute(n=11).result()
print(result)

We create a my_square operation, create a Workflow, and add the operation to the Workflow. Then, we execute the
Workflow, sending in the input n=11, wait for the result, and print it.

(For purposes of this document, we won’t cover Workflow in depth. More information about Workflow can be found
in the Workflow Documentation.)

API Documentation

2.1.3 Workflow Documentation

This documentation provides information on the Worfklow class and its API reference.

If you are new to developing Xi-CAM plugins, it is recommended that you follow the quick-start documentation first.

For more general development resources, see the Resources page.

Note that the examples in this documentation can be run in a python interpreter outside of Xi-CAM (for demonstration
purposes). Auxiliary support code to be able to do this is marked with a comment # Only need if not running
xicam. When developing within Xi-CAM, you will not need the lines of code marked with that comment.

What Is a Workflow?

In Xi-CAM, a Workflow is represents a sequence of one or more OperationPlugins to execute. Basically, it allows
you to process data through some pipeline of operations. Multiple operations can be linked together in a Workflow,
provided that the connection between any two operations is compatible (based on inputs and outputs). Execution can
be performed asynchronously or synchronously.

Where Is Workflow?

xicam.core.execution.Workflow

What Does a Workflow Look Like?

As mentioned previously, a Workflow can be thought of as a graph-like structure. We can add operations (nodes) and
connect them with links (edges).

2.1. QuickStart Guide 17

Xi-CAM, Release 0+unknown

Example

from xicam.core import execution # Only need if not running xicam
from xicam.core.execution import localexecutor # Only need if not running xicam
from xicam.core.execution import Workflow
from xicam.plugins.operationplugin import operation, output_names

execution.executor = localexecutor.LocalExecutor() # Only need if not running xicam

Define our operations
@operation
@output_names("sum")
def my_add(x, y):

return x + y

@operation
@output_names("square_root")
def my_sqrt(n):

from math import sqrt
return sqrt(n)

Instanciate operations
add_op = my_add()
sqrt_op = my_sqrt()

Create a Workflow and add our operation instances to it
workflow = Workflow()
workflow.add_operations(add_op, sqrt_op)

Link the "sum" output of add_op to the "n" input of sqrt_op
workflow.add_link(add_op, sqrt_op, "sum", "n")

Execute the workflow, sending 1 and 3 as initial inputs to add_op (the first operation)
This should give us sqrt(1 + 3) -> 2.0.
result = workflow.execute_synchronous(x=1, y=3)
print(result) # Should be ({"square_root": 2.0},)

In this example, we use an addition operation and a square root operation in our Workflow. We want to add two numbers,
then take the square root of the sum.

First, we instanciate our two operation types. This gives us an add_op operation object and a sqrt_op operation
object.

Next, we add our operations to the workflow.

We then want to link the operations together so we first add two numbers, then take the square root of the result. We
do this by connecting add_op’s “sum” output to sqrt_op’s “n” input.

Now that we have added our operations and connected them as we like, we can run our workflow. In this case, we will
use execute_synchronous (there are other methods for execution which will be explained later).

However, if we just were to try workflow.execute_synchronous(), the workflow wouldn’t know what the “x” and
“y” inputs are supposed to be for the first operation, add_op.

We can either:

1. pass in data into the first operation(s)’ inputs when we call an execute method on the workflow

18 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

2. have a GUI widget that exposes the operations through the GUI (such as WorkflowEditor), which can provide
values directly to the operations’ inputs

In this example, we used option 1 (for an example of option 2, see the ExamplePlugin’s use of WorkflowEditor
in the quick-start documentation). To do this, we passed x=1 and y=3 to our execute_synchronous call, which
provided values for the invert operation’s x and y input arguments.

Useful Methods for Modifying the Workflow

Here is a condensed version of the various ways to modify a Workflow’s operation and links. For more information,
see the API Reference.

Adding, Inspecting, and Removing Operations

Adding operations:

• add_operation – add an operation to the Workflow

• add_operations – add multiple operations to the Workflow

• insert_operation – insert an operation at a specific index in the Workflow

Inspecting operations:

• operations – get the operations currently in the Workflow

Removing operations:

• remove_operation – remove an operation from the Workflow

• clear_operations – remove all operations from the Workflow

Adding, Inspecting, and Removing Links

Adding links:

• add_link – add a link between one operation’s output and another’s input

• auto_connect_all – try to automatically connect all the operations based on input/output names

Inspecting links:

• links – get all links in the Workflow

• operation_links – get all links connected to a specific operation in the Workflow

• get_inbound_links – get all incoming links to a specific operation in the Workflow

• get_outbound_links – get all outgoing links from a specific operation in the Workflow

Removing links:

• remove_link – remove a link from the Workflow

• clear_operation_links – remove all links for a specified operation in the Workflow

• clear_links – remove all links in the Workflow

2.1. QuickStart Guide 19

Xi-CAM, Release 0+unknown

Enabling and Disabling an Operation

It is possible to enable or disable operations. By default, all operations added to a Workflow are enabled. For more
information, see the API Reference.

Executing a Workflow

When you execute a Workflow, the operations are executed based on how they are linked together.

There are a few ways to run a Workflow: execute, execute_synchronous, and execute_all.

Synchronous Execution

As we saw in our example earlier, we can use execute_synchronous to run a Workflow as a normal snippet of Python
code. When this method is run, the we wait until we get a result back before the interpreter can continue running code.

Asynchronous Execution (Recommended)

The execute and execute_allmethods are asynchronous, so they run in a separate thread. This is highly beneficial in
a GUI environment like Xi-CAM, since we don’t want to block Xi-CAM’s UI from responding, and we could potentially
offload execution onto a remote device. These methods take in several parameters; for now, we will focus on three of
these parameters:

• callback_slot – Function to execute when the results of the Workflow are ready. The callback_slot gives you
access to these results as a positional argument. This is invoked for each result. For example, let’s say you have
a crop operation that takes in an image (array) as an input parameter. You could pass in a list of images to crop
to Workflow.execute_all(), and the callback_slot will be invoked for each of the images in the passed list.
Basically, you will get a cropped image for each image sent into the workflow.

• finished_slot – Function to execute when the internal thread in the Workflow has finished its execution (all
of the operations are done). This occurs once during a Workflow’s execution.

• kwargs – Any additional keyword arguments to pass into the method; these usually correspond with the entry
operations’ inputs (as we saw in our example earlier).

The primary difference between Workflow.execute and Workflow.execute_all is that execute_all will run
multiple times for the kwargs passed in. This means the kwargs must have an iterable value. Let’s look at some
examples.

Example for execute

Let’s revisit our addition and square root workflow from earlier but make it asynchronous:

from qtpy.QtWidgets import QApplication # Only need if not running xicam
from xicam.core import execution # Only need if not running xicam
from xicam.core.execution import localexecutor # Only need if not running xicam
from xicam.core.execution import Workflow
from xicam.plugins.operationplugin import operation, output_names

qapp = QApplication([]) # Only need if not running xicam
execution.executor = localexecutor.LocalExecutor() # Only need if not running xicam

(continues on next page)

20 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

(continued from previous page)

Define our operations
@operation
@output_names("sum")
def my_add(x, y):

return x + y

@operation
@output_names("square_root")
def my_sqrt(n):

from math import sqrt
return sqrt(n)

Define callback slot (when a result is ready)
def print_result(*results):

print(results)

Define finished slot (when the workflow is entirely finished)
def finished():

print("Workflow finished.")

Instanciate operations
add_op = my_add()
sqrt_op = my_sqrt()

Create a Workflow and add our operation instances to it
workflow = Workflow()
workflow.add_operations(add_op, sqrt_op)

Link the "sum" output of add_op to the "n" input of sqrt_op
workflow.add_link(add_op, sqrt_op, "sum", "n")

Execute the workflow, sending 1 and 3 as initial inputs to add_op (the first operation)
This should give us sqrt(1 + 3) -> 2.0.
workflow.execute(callback_slot=print_result,

finished_slot=finished,
x=1,
y=3)

This will print out:

({'square_root': 2.0},)
Workflow finished.

Notice that we’ve added two new functions for our callback slot and our finished slot. print_result will be called
when the workflow has finished its execution and the result is ready. finished will be called when the workflow has
finished execution for all of its input data. In this case, we have only one set of input data, x=1 and y=3.

(Also note that we have an additional import and that we are creating a QApplication; this is not needed when working
within Xi-CAM).

2.1. QuickStart Guide 21

Xi-CAM, Release 0+unknown

Example for execute_all

Now, let’s say we want to do this addition and square root workflow for multiple sets of x and y inputs. We can use
execute_all to do this:

from qtpy.QtWidgets import QApplication # Only need if not running xicam
from xicam.core import execution # Only need if not running xicam
from xicam.core.execution import localexecutor # Only need if not running xicam
from xicam.core.execution import Workflow
from xicam.plugins.operationplugin import operation, output_names

qapp = QApplication([]) # Only need if not running xicam
execution.executor = localexecutor.LocalExecutor() # Only need if not running xicam

Define our operations
@operation
@output_names("sum")
def my_add(x, y):

return x + y

@operation
@output_names("square_root")
def my_sqrt(n):

from math import sqrt
return sqrt(n)

Define callback slot (when a result is ready)
def print_result(*results):

print(results)

Define finished slot (when the workflow is entirely finished)
def finished():

print("Workflow finished.")

Instanciate operations
add_op = my_add()
sqrt_op = my_sqrt()

Create a Workflow and add our operation instances to it
workflow = Workflow()
workflow.add_operations(add_op, sqrt_op)

Link the "sum" output of add_op to the "n" input of sqrt_op
workflow.add_link(add_op, sqrt_op, "sum", "n")

Execute the workflow, sending the inputs x=1,y=3; x=10,y=15; x=50,y=50.
This should give us 2.0, 5.0, and 10.0.
workflow.execute_all(callback_slot=print_result,

finished_slot=finished,
x=[1, 10, 50],
y=[3, 15, 50])

This will print out:

22 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

({'square_root': 2.0},)
({'square_root': 5.0},)
({'square_root': 10.0},)
Workflow finished.

Notice that we've just changed `execute` to `execute_all`, and we've modified the `x`␣
→˓and `y` values to be lists.
Now, we will have three executions: `x=1 y=3`, `x=10 y=15`, and `x=50 y=50`.
Each time one of these executions finishes, our callback slot `print_result` is called.
When the workflow is finished executing everything, then our finished slot `finished` is␣
→˓called.

API Reference

2.1.4 Install Xi-CAM

If you haven’t already installed Xi-CAM, follow the installation instructions for your operating system:

Installing Xi-CAM for Linux

Installing Xi-CAM requires a few system components to be installed. After successfully installing these components
and Xi-CAM, you will be ready to start developing Xi-CAM plugins!

Install python3

First, ensure that you have python3.8 installed on your system.

Consult your specific distribution’s package manager for installing python3.

Create and Activate a Virtual Environment

Creating a virtual environment allows you to install and uninstall packages without modifying any packages on your
system. This is highly recommended.

There are a couple of ways to create a virtual environment:

1. via the venv module provided with python3

2. via conda (you will need to install this from anaconda.org or miniconda.org)

In the commands below, we will create a new environment called xicam in your home directory, and then activate the
environment.

Once an environment is activated, any packages installed through pip will be installed into this sequestered xicam
environment. (If using conda, you can install either with pip or conda.)

2.1. QuickStart Guide 23

Xi-CAM, Release 0+unknown

virtualenv

If you would like to create a virtual environment, run the following:

cd ~
python3 -m venv xicam
source xicam/bin/actviate

conda

If you would like to create an environment through conda, run the following:

cd ~
conda create -n xicam python=3.8
conda activate xicam

Install Python Qt Bindings

Xi-CAM depends on a GUI application framework called Qt; you will need to install one of the python bindings for Qt
(PyQt5 or PySide2) in order to run Xi-CAM.

Make sure that you have activated the xicam environment.

For example, you can install the PyQt5 pip package as follows:

pip install PyQt5

Install the Xi-CAM package

Now that we have activated a new xicam environment and installed PyQt5, we can install Xi-CAM:

pip install xicam

To ensure everything is installed correctly, you can run Xi-CAM as follows:

xicam

Where Do I Go from Here?

You are now ready to start developing plugins for Xi-CAM!

To learn about developing plugins for Xi-CAM, see the Quick Start Guide.

24 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

Installing Xi-CAM for MacOS

Installing Xi-CAM requires a few system components to be installed. After successfully installing these components
and Xi-CAM, you will be ready to start developing Xi-CAM plugins!

Install python3

First, ensure that you have python3.8 installed on your system.

The quickest way to do this is by downloading and running the python.org installer for python3. The python3.8 macOS
64-bit installer can be found here.

Alternatively, you can install XCode and homebrew to manage multiple versions of python on your system.

Create and Activate a Virtual Environment

Creating a virtual environment allows you to install and uninstall packages without modifying any packages on your
system. This is highly recommended.

There are a couple of ways to create a virtual environment:

1. via the venv module provided with python3

2. via conda (you will need to install this from anaconda.org or miniconda.org)

Using the Terminal application, we will create a new environment called xicam in your home directory, and then
activate the environment.

Once an environment is activated, any packages installed through pip will be installed into this sequestered xicam
environment. (If using conda, you can install either with pip or conda.)

virtualenv

If you would like to create a virtual environment, run the following:

cd ~
python3 -m venv xicam
source xicam/bin/actviate

conda

If you would like to create an environment through conda, run the following:

cd ~
conda create -n xicam python=3.8
conda activate xicam

2.1. QuickStart Guide 25

https://www.python.org/downloads/release/
https://www.python.org/downloads/release/
https://docs.python-guide.org/starting/install3/osx/

Xi-CAM, Release 0+unknown

Install Python Qt Bindings

Xi-CAM depends on a GUI application framework called Qt; you will need to install one of the python bindings for Qt
(PyQt5 or PySide2) in order to run Xi-CAM.

Make sure that you have activated the xicam environment.

For example, you can install the PyQt5 pip package as follows:

pip install PyQt5

Install the Xi-CAM package

Now that we have activated a new xicam environment and installed PyQt5, we can install Xi-CAM:

pip install xicam

To ensure everything is installed correctly, you can run Xi-CAM as follows:

xicam

Where Do I Go from Here?

You are now ready to start developing plugins for Xi-CAM!

To learn about developing plugins for Xi-CAM, see the Quick Start Guide.

Installing Xi-CAM for Windows

Installing Xi-CAM requires a few system components to be installed. After successfully installing these components
and Xi-CAM, you will be ready to start developing Xi-CAM plugins!

Install python3

On Windows, a great way to manage python installations and packages is through Anaconda. Follow their Windows
installation instructions, which will install the conda package manager, Anaconda, Anaconda Prompt, and Anaconda
Navigator.

• Anaconda – A package that provides conda and several common python packages

• Anaconda Prompt – A command line shell for managing conda environments and installing packages

• Anaconda Navigator – A GUI for managing conda environments and installing packages

Open the Anaconda Prompt program.

Then, create a new environment called xicam. This creates a sequestered space on your system to install xicam and its
dependencies without modifying any of your system’s libraries.

Next, activate the environment. This tells the system to use the libraries and applications inside the environment.

conda create -n xicam python=3.8
conda activate xicam

26 Chapter 2. Developer Documentation

https://docs.anaconda.com/anaconda/install/windows/
https://docs.anaconda.com/anaconda/install/windows/

Xi-CAM, Release 0+unknown

Install Python Qt Bindings

Xi-CAM depends on a GUI application framework called Qt; you will need to install one of the python bindings for Qt
(PyQt5 or PySide2) in order to run Xi-CAM.

Make sure that you have activated the xicam environment.

In your open Anaconda Prompt window, install the pyqt conda package as follows:

conda install pyqt

Install the Xi-CAM package

Now that we have activated a new xicam environment and installed pyqt, we can install Xi-CAM using a python
package management tool called pip. Run the following in your open Anaconda Prompt.

pip install xicam

To ensure everything is installed correctly, you can run Xi-CAM as follows:

xicam

Where Do I Go from Here?

You are now ready to start developing plugins for Xi-CAM!

To learn about developing plugins for Xi-CAM, see the Quick Start Guide.

Copyable Instructions

Anaconda Prompt:

cd ~
conda create -n xicam
conda activate xicam

conda install -c conda-forge pyqt

pip install xicam

xicam

2.1. QuickStart Guide 27

Xi-CAM, Release 0+unknown

2.1.5 Overview

In this guide we will:

• Explore the main window of Xi-CAM

• Download and install an Example Plugin

• Configure a sample catalog so we can load data

• Explore the Example Plugin

Key Concepts

Here is a quick overview of some concepts that will be explored in this guide. Note that more documentation is available
for each of these concepts.

We have one GUIPlugin (ExamplePlugin) - this will be a plugin that you will be able to select and see within Xi-
CAM. The layout of the GUIPlugin is defined by a GUILayout.

We have a few OperationPlugins (invert and random_noise) - These plugins are basically functions that take in
data and output derived data.

We also need a way to actually run data through the operations. To do this, we have a Workflow (ExampleWorkflow)
- this contains linked operations to execute (can be thought of like a pipeline).

2.1.6 Looking at Xi-CAM’s Main Window

Let’s look at what the main window in Xi-CAM looks like first:

When Xi-CAM finishes loading, we see the window as shown above. Any installed GUIPlugins will be visible (and
selectable) at the top (note that you will probably not have any installed yet).

We can also see some of the default widgets provided:

• a welcome widget in the center of the window

• a preview widget in the top-left (lefttop) of the window, which shows a sample of selected data in the data browser
widget

• a data browser widget on the left of the window, which can show available databroker catalogs

Quick GUILayout Overview

We mentioned the terms center, lefttop, and left above. These correspond to positions in a GUILayout. Here is a quick
overview of how the Xi-CAM main window is organized:

You can see that the layout of Xi-CAM follows a 3x3 grid, where each section is named according to its orientation in
relation to the center of the window.

(Note that any GUIPlugins you create will have one or more of these GUILayouts).

28 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

Fig. 2: The main window of Xi-CAM after it has finished loading.

2.1. QuickStart Guide 29

Xi-CAM, Release 0+unknown

Fig. 3: The layout of Xi-CAM’s main window.

30 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

Xi-CAM Menu Bar

At the top of the main window, there is a menu bar that contains some helpful items.

In the File item you can find Settings for Xi-CAM. This includes things like:

• Logging configuration - where to find the log files, what type of logging record. . .

• Theme - change the appearance of Xi-CAM

• Device settings - allows managing different devices (detectors) (if you have Acquire or SAXS installed)

In the Help item you can find a link to the Xi-CAM documentation, a way to contact the development team, and
versioning / licensing information for Xi-CAM.

2.1.7 Download and Install the ExamplePlugin

Now that we have looked at the main window and its layout, let’s download the Example Plugin.

cd ~
git clone https://github.com/Xi-CAM/Xi-CAM.ExamplePlugin
cd Xi-CAM.ExamplePlugin

What’s Inside the ExamplePlugin Repository

The repository will contain the following:

Fig. 4: The contents of the ExamplePlugin repo when you clone it.

At the top there are a few files and directories:

• setup.py - describes how to install this as a python package; also used to register plugins (via entry points).

• configure - special directory for this example, helps set up a catalog

2.1. QuickStart Guide 31

Xi-CAM, Release 0+unknown

• xicam - directory that acts as a python namespace package

In xicam, there is a exampleplugin subpackage that contains:

• __init__.py - makes exampleplugin a python package; also exposes the ExamplePlugin class

• exampleplugin.py - module that contains the ExamplePlugin GUI plugin

• operations.py - module that contains the example OperationPlugins

• workflows.py - module that contains the example Workflows

How Do I Install the Example Plugin?

So far, we have only downloaded the Example Plugin - we still need to install it so Xi-CAM can find it and load it.

We can install downloaded plugins using a pip editable install:

pip install -e .

This uses Python’s entry points mechanism to register plugins for Xi-CAM to see.

Exploring the Example Plugin Interface

When you run xicam, you should now see the Example Plugin available at the top right of the main window.

Select it and you should the Example Plugin layout:

In the center, we have a CatalogView that will be used to display loaded data. On the right, there is a WorkflowEditor
that shows the operations in the workflow and allows for running the workflow. At the bottom, there is a DynImageView,
which will be used to display the results data.

2.1.8 How Do I Load Data?

Now that we have the Example Plugin installed, we need to have data to load into it.

For purposes of this guide, we will be configuring a catalog called “example_catalog.”

For more information, see the Bluesky DataBroker documentation.

Configuring a Catalog

There is a configure/ directory in the repository we cloned. This contains a catalog configuration file, a msgpack
catalog, and a script.

Feel free to inspect the script before you run it; it will attempt to set up a msgpack catalog source for Xi-CAM to use:

cd configure
python setup_catalog.py
cd ..

32 Chapter 2. Developer Documentation

https://blueskyproject.io/databroker/v2/index.html

Xi-CAM, Release 0+unknown

Fig. 5: The Example Plugin. Uses a CatalogView, DynImageView, and WorkflowEditor as widgets in its layout.

2.1. QuickStart Guide 33

Xi-CAM, Release 0+unknown

Loading a Catalog from the Data Resource Browser

Now that we’ve configured the catalog, let’s make sure that Xi-CAM can see it.

When loading a catalog into Xi-CAM, you must have a GUIPlugin active. Let’s select our “Example Plugin.”

Look at the Data Resource Browser on the left hand side of the window. The Data Resource Browser gives us access
to two different types of data browsers by default:

• a bluesky browser for catalogs (adapted from work done by NSLS-II)

• a local file browser

After configuring our example catalog, the bluesky catalog browser should have the text “example_catalog” in the
Catalog drop-down box.

Notice that it also has two text inputs, Since and Until. Our example catalog was created in the beginning of 2020. In
order to see the data (catalogs) our “example_catalog” contains, we need to change the Since text input.

Change it’s value to “2020-01-01”. This will now look for any data that was created since the start of 2020. After
making this change, the example_catalog will be re-queried for data created within these new dates.

You should see a catalog show up in the table below with the id 349497da. If you single-click the row in the table to
highlight it, more information and a preview of the data should be shown as well. You can then open it with the “Open”
button.

You should see Clyde the cat loaded into the center CatalogView.

Running a Workflow

Our Example Plugin has one internal workflow, the ExampleWorkflow. The ExampleWorkflow contains two
OperationPlugins (operations):

• invert - inverts its input image

• random_noise - applies random noise to its input image, has a “strength” parameter to define how much noise
to apply to the image

This workflow is exposed in the GUI with a WorkflowEditor on the right side of the layout.

Now that we have loaded some data, let’s run our workflow by clicking the “Run Workflow” button.

You should see an inverted picture with some random noise added to it.

Note that you can adjust the amount of random noise by selecting the “random_noise” text in the WorkkflowEditor,
then changing the value of “strength” that shows up in the parameter tree above.

2.1.9 Examining the Code

Let’s take a quick look at how the code is implemented for our Example Plugin.

The code for this particular plugin is organized into three modules:

• exampleplugin.py - Defines the ExamplePlugin (the GUIPlugin)

• operations.py - Defines two OperationPlugins: invert and random_noise

• workflows.py - Defines an ExampleWorkflow with the invert and random_noise operations

34 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

Fig. 6: Here we see catalog 349497da in the DataResourceBrowser. It has one stream (primary) with 10 events in it.
A preview shows the first frame of the data, and the opened data appears in the center.

2.1. QuickStart Guide 35

Xi-CAM, Release 0+unknown

Fig. 7: The result data after running the workflow. Note that the color lookup table can be changed by right-clicking
the gradient bar.

36 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

operations.py

Here we define OperationPlugins (or operation)

An operation can be thought of as a function; input data is sent into the operation, and the operation generates some
output with the given input.

When defining an OperationPlugin, we use Python decorators (the @ seen in the code). At the very least, you must
provide the @operation and @output_names decorators for an operation.

workflows.py

Here we define an ExampleWorkflow.

We add our two operations to the ExampleWorkflow, then connect them so that invert’s “output_image” value is
sent to random_noise’s input image argument.

exampleplugin.py

Here we define the gui plugin ExamplePlugin.

We provide a name for the plugin, which will display as “Example Plugin” in Xi-CAM.

We define our widgets, our layout, and any internal objects we might need (like the workflow) inside of our __init__
method. We connect the WorkflowEditor’s sigRunWorkflow signal to our run_workflow method. This means
whenever “Run Workflow” is clicked in the WorkflowEditor, our ExamplePlugin’s run_workflow method will be
called.

We also define a results_ready method that will be called whenever our workflow has finished executing its opera-
tions. Providing callback_slot=self.results_ready in our execute call sets up this connection for us.

2.2 Entry Points

An entry point is a mechanism that can be used to make objects discoverable by a common interface / name.

2.2.1 Xi-CAM Entry Points

In Xi-CAM, you can define entry points and then run pip install -e . in your plugin package directory to register
plugins. This allows Xi-CAM to see your plugins when it loads. Entry points are defined in setup.py files, in the
entry_points key.

Let’s look at an example repository and setup.py:

setup.py
xicam/

myplugin/
__init__.py - defines MyGUIPlugin (also marks this directory as a␣

→˓Python module)
operations/

__init__.py - marks this directory as a Python module
edge_detection.py - contains edge detection operations (laplace and sobel)

workflows/
(continues on next page)

2.2. Entry Points 37

Xi-CAM, Release 0+unknown

(continued from previous page)

__init__.py - (marks this directory as a Python module)
myworkflow.py - defines MyWorkflow.py

Here’s what our entry_points might look like in setup.py:

entry_points = {
"xicam.plugins.GUIPlugin": ["myguiplugin = xicam.myplugin:MyGUIPlugin"],
"xicam.plugins.OperationPlugin": [

"laplace_operation = xicam.myplugin.operations.edge_detection:laplace",
"sobel_operation = xicam.myplugin.operations.edge_detection:sobel"

],
}

As seen above, entry_points is a dictionary, where each key is an entry point and each value is a list of objects /
types being registered to that entry point.

The syntax is: "entry point name": ["some_identifier = package.subpackage.module:ClassName"].

In this case, we are registering MyGUIPlugin to the xicam.plugins.GUIPlugin entry point. Similarly, we are
registering the laplace and sobel operations to the xicam.plugins.OperationPlugin entry point.

Note that Workflows are not registered in this way; they are not Xi-CAM plugins.

Whenever you modify entry points, you must reinstall your package. You can do this by running pip install
-e . in your package directory.

When Xi-CAM loads, it will see the xicam.plugins.GUIPlugin entry point key and load in MyGUIPlugin defined
(in the value). Similarly, Xi-CAM will see the xicam.plugins.OperationPlugin entry point key and load in the
laplace and sobel operations.

2.2.2 More Information

For more information about entry points, see the following:

• https://entrypoints.readthedocs.io/en/latest/

• https://packaging.python.org/specifications/entry-points/

• https://amir.rachum.com/blog/2017/07/28/python-entry-points/

2.3 Data ingestion in Xi-CAM

2.3.1 What is an ingestor?

The ingestor design is specified by the Databroker team to provide an entrypoint for data generated external from the
Bluesky environment. An ingestor is a Callable that accepts a URI (often a local file path) and yields (name, doc)
pairs. The yielded data follows the Bluesky event-model structure (see event-model documentation). Synthesizing
these event-model documents is made easier with the RunBuilder (see Bluesky-Live documentation).

38 Chapter 2. Developer Documentation

https://github.com/danielballan/sniffers_and_ingestors/
https://blueskyproject.io/event-model/data-model.html
https://github.com/bluesky/bluesky-live

Xi-CAM, Release 0+unknown

2.4 Resources

2.4.1 Example Xi-CAM Plugins

• Xi-CAM CatalogViewer Plugin - Example of a simple single-stage GUIPlugin.

• Xi-CAM Log Plugin - Example of another simple single-stage GUIPlugin.

• Xi-CAM BSISB Plugin - Example of a multi-stage GUIPlugin with more functionality.

• Xi-CAM NCEM Plugin - Another example of a multi-stage GUIPlugin with more functionality.

2.4.2 Git

• Try GitHub - Landing page for some introductions and resources about git and GitHub.

• Git Handbook - An introduction to git and GitHub.

2.4.3 NSLS-II

Useful resources about NSLS-II software that Xi-CAM uses.

• Databroker Catalog - Describes how to configure and use a databroker catalog.

• Event Model - Describes an event-based data model.

• Bluesky Documents - Describes what a bluesky document is.

2.4.4 Python

Here are a few resources regarding object-oriented programming with Python3. Feel free to look through these or even
through resources you find on your own if you are interested.

• Python OOP Introduction and Tutorial -

• Presentation on OOP in Python -

• Python OOP

2.4.5 Qt

Qt is a framework written in C++ for developing graphical user interfaces. PySide2 and PyQt5 are two different python
bindings to the Qt C++ API. QtPy is a wrapper that allows for writing python Qt code with either PyQt5 or PySide2
installed.

Xi-CAM uses QtPy to interact with different Python bindings to Qt. QtPy allows you “to write your code as if you were
using PySide2 but import Qt modules from qtpy instead of PySide2 (or PyQt5)”. The references below show PySide2
examples and documentation; when writing a Xi-CAM plugin, make sure to use the qtpy modules when importing.

• PySide2 Documentation - Documentation for PySide2. Since the QtPy API resembles PySide2, this documen-
tation is helpful for looking up python Qt modules and classes that you may use.

• PyQt5 GUI Tutorial - Introductory tutorial for learning the basic concepts of Qt. Note: this tutorial is written for
PyQt5, remember to import from qtpy instead of PyQt5 or PySide2 when writing code for Xi-CAM.

• PySide2 Simple Clickable Button - Short tutorial that describes the concept of signals and slots in Qt and shows
how to create a button that responds to clicking.

2.4. Resources 39

https://github.com/Xi-CAM/Xi-cam.CatalogViewer
https://github.com/Xi-CAM/Xi-CAM.plugins.Log
https://github.com/Xi-CAM/Xi-cam.BSISB
https://github.com/Xi-CAM/Xi-CAM.NCEM
https://try.github.io/
https://guides.github.com/introduction/git-handbook/
https://nsls-ii.github.io/databroker/v2/index.html
https://nsls-ii.github.io/architecture-overview.html
https://nsls-ii.github.io/bluesky/documents.html
https://realpython.com/python3-object-oriented-programming/
https://www.cs.colorado.edu/~kena/classes/5448/f12/presentation-materials/li.pdf
https://www.python-course.eu/python3_object_oriented_programming.php
https://www.qt.io/what-is-qt/?utm_campaign=Navigation%202019&utm_source=megamenu
https://pypi.org/project/QtPy/
https://doc.qt.io/qtforpython/
https://build-system.fman.io/pyqt5-tutorial
https://wiki.qt.io/Qt_for_Python_Tutorial_ClickableButton

Xi-CAM, Release 0+unknown

• PyQtGraph - Documentation for the pyqtgraph package, which relies on Qt and provides basic data visualization
(plotting) and various widgets (helpful for writing Xi-CAM GUIPlugins).

40 Chapter 2. Developer Documentation

http://pyqtgraph.org/documentation/

CHAPTER

THREE

LINKS

• Xi-CAM GitHub Organization

41

https://github.com/Xi-CAM

Xi-CAM, Release 0+unknown

42 Chapter 3. Links

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

43

	Getting Started
	Developer Documentation
	QuickStart Guide
	GUIPlugin Documentation
	What Is A GUIPlugin?
	Where is GUIPlugin?
	What Does a GUIPlugin Look Like?

	How Do I Create a GUIPlugin?
	What is cookiecutter?
	Install cookiecutter
	Run cookiecutter with the Xi-CAM GUIPlugin Template

	Installing Your GUIPlugin
	Selecting and Activating a GUIPlugin
	How is MyPlugin Implemented?
	What Is a Stage?
	What Is a GUILayout?
	What Is a QLabel?

	How Do I Load Data into My Plugin?
	Configuring a Databroker Catalog
	Moving the msgpack Data
	Updating catalog.yml
	Making catalog.yml Discoverable

	Implementing appendCatalog

	API Reference

	OperationPlugin Documentation
	What Is an OperationPlugin?
	Where Is OperationPlugin?
	What Does an OperationPlugin Look Like?
	Default Input Values
	Required and Highly-Used Decorators
	Type Hinting (Optional)
	Example

	How Do I Use an OperationPlugin?
	API Documentation

	Workflow Documentation
	What Is a Workflow?
	Where Is Workflow?
	What Does a Workflow Look Like?
	Example

	Useful Methods for Modifying the Workflow
	Adding, Inspecting, and Removing Operations
	Adding, Inspecting, and Removing Links
	Enabling and Disabling an Operation

	Executing a Workflow
	Synchronous Execution
	Asynchronous Execution (Recommended)
	Example for execute
	Example for execute_all

	API Reference

	Install Xi-CAM
	Installing Xi-CAM for Linux
	Install python3
	Create and Activate a Virtual Environment
	virtualenv
	conda

	Install Python Qt Bindings
	Install the Xi-CAM package
	Where Do I Go from Here?

	Installing Xi-CAM for MacOS
	Install python3
	Create and Activate a Virtual Environment
	virtualenv
	conda

	Install Python Qt Bindings
	Install the Xi-CAM package
	Where Do I Go from Here?

	Installing Xi-CAM for Windows
	Install python3
	Install Python Qt Bindings
	Install the Xi-CAM package
	Where Do I Go from Here?
	Copyable Instructions

	Overview
	Key Concepts

	Looking at Xi-CAM’s Main Window
	Quick GUILayout Overview
	Xi-CAM Menu Bar

	Download and Install the ExamplePlugin
	What’s Inside the ExamplePlugin Repository
	How Do I Install the Example Plugin?
	Exploring the Example Plugin Interface

	How Do I Load Data?
	Configuring a Catalog
	Loading a Catalog from the Data Resource Browser
	Running a Workflow

	Examining the Code
	operations.py
	workflows.py
	exampleplugin.py

	Entry Points
	Xi-CAM Entry Points
	More Information

	Data ingestion in Xi-CAM
	What is an ingestor?

	Resources
	Example Xi-CAM Plugins
	Git
	NSLS-II
	Python
	Qt

	Links
	Indices and tables

