Xi-CAM

Release 0+unknown

Ronald J. Pandolfi

Apr 18, 2023

1 Getting Started

2 Developer Documentation
3 Links

4 Indices and tables

Index

CONTENTS

55
57

59

Xi-CAM, Release 0+unknown

The Xi-CAM package is a plugin-based framework and graphical user interface (GUI) application for synchrotron data
management, acquisition, visualization, and analysis. Support for a variety of techniques is provided through its plugin
architecture.

CONTENTS 1

Xi-CAM, Release 0+unknown

2 CONTENTS

CHAPTER
ONE

GETTING STARTED

Before starting to develop plugins, you will need to install Xi-CAM and some of its dependencies.

Follow the QuickStart guide to get started with installation and exploring an example Xi-CAM plugin (covers GUIPlu-
gin, Workflow, and OperationPlugins).

For more detailed documentation, you may want to visit the following:
e GUIPlugin documentation
¢ OperationPlugin documentation
* Workflow documentation

The Resources section has useful links to tutorials, examples, and documentation that can help with developing Xi-
CAM plugins.

quickstart.html
gui-plugin.html
operation-plugin.html
workflow.html
resources.html

Xi-CAM, Release 0+unknown

4 Chapter 1. Getting Started

CHAPTER
TWO

DEVELOPER DOCUMENTATION

2.1 QuickStart Guide

This is a quick-start guide that will help you install Xi-CAM and explore an example plugin that you can experiment
with.

This guide does not explore the implementation of the plugin in too much detail. For more in-depth documentation for
developing plugins from scratch, see:

2.1.1 GUIPlugin Documentation

This documentation provides information on GUIPlugins and GUILayouts to help with designing your own plugins for
Xi-CAM. API reference documentation is also included at the bottom.

If you are new to developing Xi-CAM plugins, it is recommended that you follow the quick-start documentation first.

For more general development resources, see the resources documentation.

What Is A GUIPlugin?

A GUIPlugin is an interactive user-facing plugin in Xi-CAM. It can be used to visualize and analyze data.

GUIPlugins make use of the qtpy Python package for interactive GUI components. See the resources documentation
for more information.

Where is GUIPlugin?

xicam.plugins.guiplugin

What Does a GUIPlugin Look Like?

First, let’s look at what Xi-CAM looks like when you first load it:

Main window of Xi-CAM when running xicam. Note that there are three installed GUIPIlugins here; if you haven’t
installed any plugins, you won’t see any listed.

As you can see, the main window of Xi-CAM after it has finished loading shows any installed GUIPlugins, a citation /
references widget, a preview widget, and a data browser widget. The data browser widget can be used to load data into
a GUIPlugin. The data preview widget can be used to “preview” data before loading it.

Xi-CAM, Release 0+unknown

[] Xi-cam

Eile Help C mg—i—a[led Dlﬂbgms
o

alog Viewer Example Plugin GUlLayout Demo
(lefttop)

Lol VAR s L = L

\Applied Math

Welcome to Xi-cam

1P
. J. Synchrotron Rad. 25, 1261-

Cu

LT BER S (Center)
Doco. RESOUTCE risoikine seamdernoener StV ()1 dgef
Rrowser e on \o&dup

(1eFH)

6 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

It is important to keep in mind a few concepts for GUIPlugins:
* A GUIPlugin can have one or more stages.
¢ Each stage is defined with a GUILayout.
* A GUILayout is defined with a widget (or multiple widgets).

These concepts are explored in more detail later in this document.

How Do | Create a GUIPlugin?

To create a GUIP1lugin, you will need:
¢ aderived class of GUIPlugin
* a setup.py file with a xicam.plugins.GUIPlugin entry point

Although you may structure your plugin’s code and support files as you like, we recommend using a cookiecutter
template that we have created for Xi-CAM’s GUIPlugin.

What is cookiecutter?

cookiecutter is a templating tool that can be used to interactively create python project. For more information, see
the cookiecutter documentation.

Install cookiecutter

In your active environment, you will need to pip install cookiecutter.

Run cookiecutter with the Xi-CAM GUIPlugin Template

Now, in the directory of your choice (the home directory, ~, should work if you are unsure), run the following:

cookiecutter https://github.com/Xi-CAM/Xi-cam.templates.GuiPlugin

This will download the template for creating a GUIPlugin, then present you with a series of prompts.

A prompt will look like prompt [default value]: . If you want to use the default value specified, hit the enter
key. Otherwise, respond to the prompt with the value you would like.

Here are the prompts with their descriptions:

This will create a python package with some files and code to get started developing a GUIPlugin. You can always
change the names of your plugin, package, etc. later by hand.

The GUIPlugin you created will be implemented in xicam.package_name/xicam/package_name/__init__.py.

For purposes of this documentation, we will refer to these values by their defaults.

2.1. QuickStart Guide 7

https://cookiecutter.readthedocs.io

Xi-CAM, Release 0+unknown

Installing Your GUIPlugin

When you create a new plugin package using cookiecutter, one of the files it generates is setup.py. This contains
meta-information about the package. When you run pip install of your package, it uses this information to create
a disribution.

setup.py also defines entry points, which Xi-CAM uses to find plugins.
For more information about entry points in Xi-CAM, see the following documentation.

Navigate to your created package directory and create an editable pip install:

cd xicam.my_plugin
pip install -e .

This tells pip install your file locally by looking at the setup.py file, and the -e allows you to make changes to your
code without having to reinstall.

If you change an entry point in setup.py, you must reinstall.

Selecting and Activating a GUIPlugin

We can activate any of the installed GUIPlugins by clicking on their name at the top. Let’s click on “My Plugin”:

Note that this plugin doesn’t do much yet; it simply displays the text “Stage 1...” You can also click “Stage 2” at the
top, and you will see the text “Stage 2...” in the center.

How is MyPlugin Implemented?

The code for MyPlugin is implemented in xicam.package_name/xicam/package_name/__init__.py.

from qtpy.QtWidgets import QLabel

from xicam.plugins import GUIPlugin, GUILayout

class MyPlugin(GUIPlugin):
Defines the name of the plugin (how it is displayed in Xi-CAM)
name = "My Plugin"

def __init__(self, *args, **kwargs):
Insert code here

Modify stages here
self.stages = {'Stage 1': GUILayout(QLabel("Stage 1...")),
"Stage 2": GUILayout(QLabel('Stage 2..."))}

Initialize the parent class, GUIPlugin
super (MyPlugin, self).__init__(*args, **kwargs)

Cookiecutter set up this starter code for us. We have a derived version of GUIP1lugin, which we call MyPlugin. It has
the name “My Plugin”, which is how it will appear in the Xi-CAM GUL

We then have an __init__ method to describe how to create a MyPlugin. Notice that there is a QLabel, which is
simply text, added into two GUILayouts. These layouts are then added to the interface via self.stages.

8 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

Stage 1 Stage 2

Until:

Cust

Fig. 1: MyPlugin’s interface.

2.1. QuickStart Guide 9

Xi-CAM, Release 0+unknown

What Is a Stage?

Visually, a stage is a stand-alone interface for a GUIPlugin. A GUIPlugin must have at least one stage but may have
multiple stages. With multiple stages, each stage has its own interface and each stage can be selected in the top bar of
Xi-CAM.

Stages for a GUIPlugin are accessible with self.stages. self.stages is a dictionary where each
* key is the name of the stage
¢ value is a GUILayouts

For example, we might define two stages as:

self.stages = {"A": GUILayout(QLabel("1")),
"B": GUILayout(QLabel("2"))}

This will look like:

Xi-cam

CUr rel’ﬁ‘/v

i

Cutrent
Stoge

Local Databroker

The interface of a plugin named “My Plugin” with multiple stages, “A” and “B”. Note that “A” is currently selected,
so we see the label “1” in the middle of the window.

10 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

What Is a GUILayout?

A GUILayout is a layout used to describe how widgets should be organized in a stage in a GUIPlugin.

Xi-cam

Catalog Viewer Example Plugin GUILayout Demo

top righttop

center

leftbottom bottom rightbottom

The layout corresponds to a 3x3 grid in the Xi-CAM main window, with the names center, left, right, lefttop, righttop,
leftbottom, rightbottom. These names correspond to the arguments you can pass when creating a GUILayout.

You must provide at least one widget, which will be the center widget.

2.1. QuickStart Guide 11

Xi-CAM, Release 0+unknown

What Is a QLabel?

QLabel is a Qt widget provided by the Qt backend Xi-CAM makes use of. It acts a widget that holds simple text.

For more information on Qt, see Qt for Python Documentation.

How Do | Load Data into My Plugin?

In order to load data into a GUIPlugin, you must:
* have access to or configure a databroker catalog
* re-implement appendCatalog in your GUIPlugin derived class
— this will need to have access to an internal widget to display the data

¢ have a GUIPlugin selected in Xi-CAM

Configuring a Databroker Catalog

For purposes of this documentation, we will be using a sample msgpack catalog and a starter catalog.yml file you can
download.

For general help about databroker, catalogs, and configuration, there is excellent documentation here:
https://nsls-ii.github.io/databroker/v2/index.html. ~ Additional documentation about catalogs can be found here:
https://intake.readthedocs.io/en/latest/index.html

Download MD5
349497da-ead2-4015-8201-4719f8a2de69.msgpack | 3a18341f570b100afbaff1c889e9b4{8
catalog.yml c14814b4537810f14300f8¢c8d5949285

After downloading these files, we will want to do three things:
1. Decide where to put our data and move it there
2. Update our catalog.yml paths to have a path directory the data is in

3. Move our catalog.yml to a place it can be discovered

Moving the msgpack Data

You can choose where you’d like to copy or move your data. For purposes of this guide, we will create a new directory
in our home called catalogs and move the downloaded msgpack file there.

Updating catalog.yml
Now that we’ve moved / copied our sample catalog msgpack file, we need to update our catalog.yml to tell it where

it can find that data.

We will want to add a line under paths in catalog.yml that is the complete file path to the catalogs directory we
added above.

12 Chapter 2. Developer Documentation

https://doc.qt.io/qtforpython/

Xi-CAM, Release 0+unknown

Making catalog.yml Discoverable

To know where we can put our catalog.yml file, we can run the following in a Python interpreter:

from databroker import catalog_search_path
print(catalog_search_path())

You can move the catalog.yml file in any of the paths listed. Note that typically there will be a more user-oriented
path and a more global system-level path for the catalogs to find. You can copy the catalog.yml file to either (or
both) path depending on how you want a machine set up.

Implementing appendCatalog

Let’s implement the appendCatalog method in MyPlugin so we can load the catalog. We will also be adding a widget
to view the loaded catalog.

Inside of the MyPlugin class (located in xicam/my_plugin/__init__.py), add the appendCatalog as follows:

from qtpy.QtWidgets import QLabel

from xicam.core.msg import logMessage
from xicam.plugins import GUILayout, GUIPlugin
from xicam.gui.widgets.imageviewmixins import CatalogView

class MyPlugin(GUIPlugin):
Define the name of the plugin (how it is displayed in Xi-CAM)
name = "My Plugin"

def __init__(self, *args, **kwargs):
self._catalog_viewer = CatalogView()
self._stream = "primary"
self._field = "img"

catalog_viewer_layout = GUILayout(self._catalog_viewer)

Modify stages here
self.stages = {"Stage 1": GUILayout(QLabel("Stage 1..."))}
self.stages = {"View Catalog": catalog_viewer_layout}

super (MyPlugin, self).__init__(*args, **kwargs)

def appendCatalog(self, catalog):
self._catalog_viewer.setCatalog(catalog, self._stream, self._field)
logMessage(f"Opening catalog with stream {self._stream} and field {self._field}.
<4,")

2.1. QuickStart Guide 13

Xi-CAM, Release 0+unknown

API Reference

class xicam.plugins.guiplugin.GUIPlugin
GUTIPlugin class for interactive Xi-CAM plugins.

This class represents the fundamental interactive plugin for Xi-CAM.

GUIPlugins are left uninstanciated until all plugins are loaded so that all dependent widgets are loaded before
the Ul is setup. They DO become singletons.

appendCatalog(catalog: BlueskyRun, **kwargs)
Re-implement to define how to add a catalog to your GUIPlugin.

Parameters
catalog (BlueskyRun) — Catalog reference that you can use as you wish (corresponds to
the opened catalog in DataResourceBrowser).

property stages: OrderedDict
Returns the stages of the GUIPlugin.

A stage is defined by a GUILayout; each stage represents a distinct user-interface in a GUIPlugin.

class xicam.plugins.guiplugin.GUILayout (center, left=PanelState.Defaulted, right=PanelState. Defaulted,
bottom=PanelState. Defaulted, top=PanelState. Defaulted,
lefttop=PanelState. Defaulted, righttop=PanelState. Defaulted,
leftbottom=PanelState. Defaulted,
rightbottom=PanelState. Defaulted)

Represents a layout of dockable widgets in a 3x3 grid.

The parameters can either be a PanelState value or a QWidget object. Note that only the center parameter is
required; the other parameters default to PanelState. Defaulted. The default behavior of a PanelState. Defaulted
widget is to be hidden.

Parameters
» center (Union[QWidget, PanelState])— The center widget
» left (Union[QWidget, PanelState], optional)— The left widget
e right (Union[QWidget, PanelState], optional) - The right widget
* bottom (Union[QWidget, PanelState], optional)- The bottom widget
* top (Union[QWidget, PanelState], optional) - The top widget
» lefttop (Union[QWidget, PanelState], optional) - The top-left widget
e righttop (Union[QWidget, PanelState], optional)— The top-right widget
» leftbottom (Union[QWidget, PanelState], optional)— The bottom-left widget

» rightbottom (Union[QWidget, PanelState], optional)- The bottom-right widget

14 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

Notes

For an example of how this class can be used, see the xicam.gui XicamMainWindow class.

2.1.2 OperationPlugin Documentation

This documentation provides information on the foundational aspects of the OperationPlugin class, as well as a more
detailed API reference.

If you are new to developing Xi-CAM plugins, it is recommended that you follow the quick-start documentation first.

For more general development resources, see the Resources page.
What Is an OperationPlugin?
An OperationPlugin can be thought of as a function with some extra annotations attached to it. When we want to define

an OperationPlugin, we simply need to define a Python function, then add some additional syntax to the function to
define things like inputs, outputs, descriptions of inputs/outputs, units, etc.

To achieve this, The OperationClass makes extensive use of Python decorators.

Where Is OperationPlugin?

xicam.plugins.operationplugin

What Does an OperationPlugin Look Like?

Let’s start off with a simple function that computes the square of its input:

def my_square(n):
return n**2

Now, let’s make this an OperationPlugin:

from xicam.plugins.operationplugin import operation, output_names

@operation

@output_names("square")

def my_square(n):
return n**2

That’s it!
Notice the two decorators here: @operation and @output_names.

The @operation says that this function is now a Xi-CAM OperationPlugin. Any input arguments for the function will
be the input names for the operation. In this case, our input is n. (This can actually be overwritten by using a different
decorator, @input_names, which is described later.)

The @output_names allows us to name our outputs, in this case, square. This will be useful when connecting multiple
operations together in a Workflow.

2.1. QuickStart Guide 15

Xi-CAM, Release 0+unknown

Default Input Values

If you want to provide your operation with default input values, you can use argument defaults in your function:

from xicam.plugins.operationplugin import operation, output_names

@operation

@output_names(''square")

def my_square(n = 0):
return n**2

This provides this operation’s n input with a default value of 0.

Required and Highly-Used Decorators

In order to make a function an operation, the following decorators must be used:
* @operation — allows creation of operations from the function
e @output_names — defines the name of the output(s)
Additionally, although not required to for an operation, the following decorators are highly-recommended for use:
e @display_name — the name of the operation
* @describe_input — attach a description to the specified input (can be used multiple times)

* @describe_output — attach a description to the specified output (can be used multiple times)

Type Hinting (Optional)

With Python3 (3.5+), you can add type hinting to your code. In the context of Xi-CAM OperationPlugins, this can be
used to make your operation code a little easier to read.

Let’s use the my_square function we defined earlier in this operation:

from xicam.plugins.operationplugin import operation, output_names

@operation

@output_names('square")

def my_square(n: int) -> int:
return n**2

Note the n: int and the -> int: here. These suggest (but do not mandate) that the input be an integer, and the
output expected is an integer.

Again, these are not required, but they can help with readability and debugging your code.

For more information, see Python’s typing module.

16 Chapter 2. Developer Documentation

https://docs.python.org/3/library/typing.html

Xi-CAM, Release 0+unknown

Example

A simple division operation that returns both the quotient and remainder.

This illustrates the use of multiple input/output descriptions and multiple outputs.

from typing import Tuple
from xicam.plugins.operationplugin import describe_input, describe_output, display_name,.
—.operation, output_names

@operation

@output_names("'quotient", "remainder")
@display_name("Division with Remainder")
@describe_input("dividend", "The number being divided.")
@describe_input("divisor", "The number to divide by.")
@describe_output("quotient", "The result of the division.")
@describe_output("remainder", "The remaining value.")

def my_divide(dividend: int, divisor: int = 1) -> Tuple[int, int]:
quotient = int(dividend // divisor)
remainder = dividend % divisor
return quotient, remainder

How Do | Use an OperationPlugin?

Now that we’ve defined an operation, how do we actually use it?

When we define an operation using the @operation decorator around a function, we are defining a new operation
class.

We can then create an operation object by using the syntax func(), where func is the name of the function in the
operation.

Let’s take our my_square operation (defined above) and create one:

from xicam.plugins.operationplugin import operation, output_names

@operation

@output_names("square")

def my_square(n):
return n**2

op = my_square()

Now that we have an operation object (instance), op, we can use it within a Workflow.

Let’s create a Workflow, add our operation to it, then execute it.

from xicam.core.execution import Workflow
from xicam.plugins.operationplugin import operation, output_names

@operation

@output_names("square")

def my_square(n):
return n**2

(continues on next page)

2.1. QuickStart Guide 17

Xi-CAM, Release 0+unknown

(continued from previous page)

op = my_square()

workflow = Workflow()
workflow.add_operation(op)

result = workflow.execute(n=11).result()
print(result)

We create a my_square operation, create a Workflow, and add the operation to the Workflow. Then, we execute the
Workflow, sending in the input n=11, wait for the result, and print it.

(For purposes of this document, we won’t cover Workflow in depth. More information about Workflow can be found
in the Workflow Documentation.)

API Documentation

@xicam.plugins.operationplugin.operation(func: Callable, filled_values: Optional[dict] = None, fixable:
Optional[dict] = None, fixed: Optional[dict] = None,
input_names: Optional[Tuple[str, ...]] = None, output_names:
Optional[Tuple[str, ...]] = None, limits: Optional[dict] = None,
opts: Optional[dict] = None, output_shape: Optional[dict] =
None, units: Optional[dict] = None, visible: Optional[dict] =
None, name: Optional[str] = None, input_descriptions:
Optional[dict] = None, output_descriptions: Optional[dict] =
None, categories: Optional[Sequence[Union[tuple, str]]] =
None) — Type[OperationPlugin]

Create a new operation.

When you define a new operation, you must use this decorator (‘@operation°) and the "@output_names " deco-
rator.

This function can be used as a decorator to define a new operation type. The operation can then be instantiated
by using the () operator on the operation function’s name.

Parameters
» func (Callable) — Function that this operation will call.
e filled_values (dict, optional)— Values to fill for the parameters.
» fixable (dict, optional) - Indicates which parameters are able to be fixed.
» fixed (dict, optional) - Indicates whether or not a parameter is fixed.
e limits (dict, optional) - Defines limits for parameters.

» opts(dict, optional)- Additional options (kwargs) for the parameter (useful with pyqt-
graph’s Parameter/ParameterTree).

* output_names (tuple, optional) — Names for the outputs, or returned values, of the
operation.

* output_shape (dict, optional) - Defines expected shapes for the outputs.
* units (dict, optional) - Defines units for the parameters in the operation.

* name (str, optional) — The display name to be shown to the user. Defaults to
self._ name__

» visible (dict, optional) — Indicates if a parameter is visible or not (see pyqt-
graph.Parameter).

18 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

» input_descriptions (dict, optional)— A mapping dict containing descriptions for
each named input

» output_descriptions (dict, optional)— A mapping dict containing descriptions for
each named output

» categories (List[Union[tuple, str], optional)- A sequence of categories to as-
sociate with this operation.

Example

Create a new operation type and create a new operation instance from it.

>>> from xicam.core.execution import Workflow

>>> from xicam.plugins.operationplugin import operation, output_names
>>> @operation

>>> @output_names("my_output™)

>>> def my_func(x: float = 0.0) -> float:

>>> return x * -1

>>> op = my_func()

>>> workflow = Workflow()

>>> result = workflow.execute(x=2.5).result()

>>> print(result)

@xicam.plugins.operationplugin.output_names
Decorator to define the names of the outputs for an operation.

Defines N-number of output names. These names will be used (in-order) to define any outputs that the operation
has.

Parameters
names (List[str])— Names for the outputs in the operation.

Example

Define an operation that has the outputs x and y.

>>> @OperationPlugin

>>> @output_names("x", "y")
>>> def some_operation(a: int, b: int) -> Tuple[int, int]:
>>> return a, b

@xicam.plugins.operationplugin.categories (*categories: Union[tuple, str])

Decorator to assign categories to a operation.
These categories will be used to populate the structure of Xi-cam’s menus of OperationPlugins.

Parameters
categories (Tuple[Union[tuple, str]])- A sequence of categories. Each item is a tuple
or str. If an item is a tuple, each item in the tuple is considered as an additional depth in the menu
structure.

2.1. QuickStart Guide 19

Xi-CAM, Release 0+unknown

Example

Define an operation that is in the following categories:

Generic Functions
Simple Math
(square operation)
Math Functions
(square operation)

>>> @0perationPlugin

>>> @categories(('Generic Functions', 'Simple Math'), 'Math Functions')
>>> def square(x: int = 100) -> int:
>>> return x**2

@xicam.plugins.operationplugin.describe_input (arg_name: str, description: str)

Decorator to set the description for input arg_name.
This is useful for annotating the parameter with additional information for users.
These annotations are displayed in GUI representations of the operation.
Parameters
* arg_name (str) — Name of the input to add options for.

* description (str) — A human-readable description of the input arg_name

Example

Define an operation and attach a description to its x input argument.

>>> @OperationPlugin

>>> @describe_input('x', 'The value to square.')
>>> def square(x: int = 100) -> int:
>>> return x**2

@xicam.plugins.operationplugin.describe_output (arg_name: str, description: str)

Decorator to set the description for output arg_name.
This is useful for annotating the parameter with additional information for users.
These annotations are displayed in GUI representations of the operation.
Parameters
* arg_name (str) — Name of the input to add options for.

* description (str) — A human-readable description of the output arg_name.

20 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

Example

Define an operation and attach a description to its square output.

>>> @OperationPlugin
>>> @output_names('square')

>>> @describe_output('square', 'The squared value of x.')
>>> def square(x: int = 100) -> int:
>>> return x**2

@xicam.plugins.operationplugin.display_name

Set the display name for the operation.
Display name is how this operation’s name will be displayed in Xi-cam.

Parameters
name (str) — Name for the operation.

Example

Create an operation whose display name is “Cube Operation.”

>>> @OperationPlugin

>>> @display_name('Cube Operation')
>>> def cube(n: int = 2) -> int:
>>> return n**3

@xicam.plugins.operationplugin. fixed(arg_name, fix=True)

Decorator to set whether or not an input’s value is fixed.
Fixed means that the input’s value is fixed in the context of model fitting.
By default, sets the arg_name input to fixed, meaning its value cannot be changed.
Parameters
* arg_name (str) — Name of the input to change fix-state for.
e fix (bool, optional)—- Whether or not to fix arg_name (default is True).
e example (TODO) —

@xicam.plugins.operationplugin.input_names
Decorator to define input names for the operation.

The number of names provided must match the number of arguments for the operation/function.

If not provided, input names will be determined by examining the names of the arguments to the operation
function.

2.1. QuickStart Guide 21

Xi-CAM, Release 0+unknown

Example

Create an addition operation and use the names “first” and “second” for the input names instead of the function
arg names (x and y).

>>> @0OperationPlugin

>>> @input_names("first", "second")
>>> def my_add(x: int, y: int) -> int:
>>> return x + y

@xicam.plugins.operationplugin.limits(arg_name, limit)

Decorator to define limits for an input.
Limits restrict the allowable values for the input (inclusive lower-bound, inclusive upper-bound).
Parameters
* arg_name (str) — Name of the input to define limits for.

e limit (tuple[float])— A 2-element sequence representing the lower and upper limit.

Example

Make an operation that has a limit on the x parameter from [0, 100].

>>> @0OperationPlugin

>>> @limits('x', [0, 100])
>>> def op(x):

>>>

Make an operation that has a limit on the x parameter from [0.0, 1.0].

>>> @OperationPlugin

>>> @limits('x', [0.0, 1.0])
>>> @opts('x', step=0.1)
>>> def op(x):

>>>

@xicam.plugins.operationplugin.output_shape (arg_name: str, shape: Union[int, Collection[int]])

Decorator to set the shape of an output in an operation.”
Parameters
* arg_name (str) — Name of the output to define a shape for.

» shape (int or tuple of ints) - N-element tuple representing the shape (dimensions)
of the output.

22 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

Example

TODO

@xicam.plugins.operationplugin.opts(arg_name: str, **options)

Decorator to set the opts (pyqtgraph Parameter opts) for arg_name.
This is useful for attaching any extra attributes onto an operation input argument.

These options correspond to the optional opts expected by pyqtgraph.Parameter. The options are typically used
to add extra configuration to a Parameter.

Parameters
* arg_name (str) — Name of the input to add options for.

» options (keyword args)-Keyword arguments that can be used for the rendering backend
(pyqtgraph).

Example

Define an operation where the x input is readonly.

>>> @OperationPlugin

>>> @opts('x', 'readonly'=True)
>>> def op(x: str = 100) -> str:
>>> return x

@xicam.plugins.operationplugin.units(arg_name, unit)
Decorator to define units for an input.

Associates a unit of measurement with an input.
Parameters
* arg_name (str) — Name of the input to attach a unit to.

e unit (str) — Unit of measurement descriptor to use (e.g. “mm”).

Example

Create an operation where its x parameter has its units defined in microns.

>>> @0perationPlugin

>>> @units('x', '""+'m")
>>> def op(x: float = -1) -> float:
>>> return x *= -1.0

@xicam.plugins.operationplugin.visible(arg_name: str, is_visible=True)

Decorator to set whether an input is visible (shown in GUI) or not.
Parameters
* arg_name (str) — Name of the input to change visibility for.

» is_visible (bool, optional)- Whether or not to make the input visible or not (default
is True).

2.1. QuickStart Guide 23

Xi-CAM, Release 0+unknown

Example

Define an operation that makes the data_image invisible to the GUI (when using as_parameter() and pyqtgraph).

>>> @OperationPlugin

>>> @visible('data_image')

>>> def threshold(data_image: np.ndarray, threshold: float = 0.5) -> np.ndarray:
>>> return ...

class xicam.plugins.operationplugin.OperationPlugin(**filled_values)

A plugin that can be used to define an operation, which can be used in a Workflow.
Note: use the @operation decorator to create an operation type.

At its simplest level, an operation can be though of as a function. Any arguments (parameters) defined in the
python function are treated as inputs for the operation. An operation’s outputs are defined by the returned values
of the python function.

There are various methods available to help with modifying the operation’s parameters.

For more information on the attributes, see the documentation for their respective method (e.g. for more infor-
mation on limits, see the limits method documentation).

For an easy way to expose parameters in the GUI, use OperationPlugin.as_parameter in conjunction with pyqt-
graph.Parameter.create. Note that only input parameters that have type hinting annotations will be included in
the return value of OperationPlugin.as_parameter.

filled_values

Keys are the parameter names, values are the current values for the parameter.

Type

dict
fixable
Keys are the parameter names, values are bools indicating whether or not the parameter is able to be fixed.
Type
dict
fixed
Keys are the parameter names, values are bools indicating whether or not the parameter is fixed.
Type
dict
input_names

Names (in order) of the input argument(s) for the operation. Note that if not provided, input names default
to the argument names in the function signature.

Type
Tuple[str, ...]

limits
Keys are the parameter names, values are the limits (which are a collection of floats).

Type
dict

opts
Any additional options (kwargs) to be passed to the parameter (useful with pyqtgraph).

24

Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

Type
dict
output_names
Names (in order) of the output(s) for the operation.
Type
Tuple[str, ...]

output_shape
Keys are the output parameter names, values are the expected shape of the output (which are of type list).
Type
dict
units
Keys are the parameter names, values are units (of type str).
Type
dict
visible
Keys are the pareameter names, values are bools indicating whehter or not the parameter is visible (when
exposed using pyqtgraph).
Type
dict
disabled
Whether or not the operation is disabled (default is False).

Type
bool

display_name

The name of the operation as it should be displayed to a user.

Type

str
hints
Type
list
input_descriptions

A mapping dict containing descriptions of each named input parameter

Type
dict
output_descriptions
A mapping dict containing descriptions of each named output parameter

Type

dict

2.1.

QuickStart Guide 25

Xi-CAM, Release 0+unknown

Notes

This class formally deprecates usage of the ProcessingPlugin APIL.

Example

Here, we define a function, then wrap it with the OperationPlugin decorator to make it an operation.

>>> @OperationPlugin
>>> def my_operation(x: int = 1, y: int = 2): -> int
>>> return x +y

class xicam.plugins.operationplugin.ValidationError (operation, message)

Bases: OperationError
Exception raised for invalid OperationPlugin configurations.
operation

Reference to the operation that failed its validation check.

Type

OperationPlugin
message
Explanation of the error.

Type

str

2.1.3 Workflow Documentation

This documentation provides information on the Worfklow class and its API reference.

If you are new to developing Xi-CAM plugins, it is recommended that you follow the quick-start documentation first.

For more general development resources, see the Resources page.

Note that the examples in this documentation can be run in a python interpreter outside of Xi-CAM (for demonstration
purposes). Auxiliary support code to be able to do this is marked with a comment # Only need if not running

xicam. When developing within Xi-CAM, you will not need the lines of code marked with that comment.

What Is a Workflow?

In Xi-CAM, a Workflow is represents a sequence of one or more OperationPlugins to execute. Basically, it allows
you to process data through some pipeline of operations. Multiple operations can be linked together in a Workflow,
provided that the connection between any two operations is compatible (based on inputs and outputs). Execution can

be performed asynchronously or synchronously.

26

Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

Where Is Workflow?

xicam.core.execution.Workflow

What Does a Workflow Look Like?

As mentioned previously, a Workflow can be thought of as a graph-like structure. We can add operations (nodes) and
connect them with links (edges).

Example

from xicam.core import execution # Only need if not running xicam

from xicam.core.execution import localexecutor # Only need if not running xicam
from xicam.core.execution import Workflow

from xicam.plugins.operationplugin import operation, output_names

execution.executor = localexecutor.LocalExecutor() # Only need if not running xicam

Define our operations
@operation
@output_names("sum")
def my_add(x, y):
return x + y

@operation
@output_names("square_root")
def my_sqrt(n):
from math import sqrt
return sqrt(n)

Instanciate operations
add_op = my_add()
sqrt_op = my_sqrt()

Create a Workflow and add our operation instances to it
workflow = Workflow()

workflow.add_operations(add_op, sqrt_op)

Link the "sum" output of add_op to the "n" input of sqrt_op
workflow.add_link(add_op, sqrt_op, "sum", "n")

Execute the workflow, sending 1 and 3 as initial inputs to add_op (the first operation)
This should give us sqrt(l + 3) -> 2.0.

result = workflow.execute_synchronous(x=1, y=3)

print(result) # Should be ({"square_root": 2.0},)

In this example, we use an addition operation and a square root operation in our Workflow. We want to add two numbers,
then take the square root of the sum.

First, we instanciate our two operation types. This gives us an add_op operation object and a sqrt_op operation
object.

2.1. QuickStart Guide 27

Xi-CAM, Release 0+unknown

Next, we add our operations to the workflow.

We then want to link the operations together so we first add two numbers, then take the square root of the result. We

LT3 9, 669

do this by connecting add_op’s “sum” output to sqrt_op’s “n” input.

Now that we have added our operations and connected them as we like, we can run our workflow. In this case, we will
use execute_synchronous (there are other methods for execution which will be explained later).

9

However, if we just were to try workflow. execute_synchronous (), the workflow wouldn’t know what the “x”” and

[T}

y”” inputs are supposed to be for the first operation, add_op.
We can either:
1. pass in data into the first operation(s)’ inputs when we call an execute method on the workflow

2. have a GUI widget that exposes the operations through the GUI (such as WorkflowEditor), which can provide
values directly to the operations’ inputs

In this example, we used option 1 (for an example of option 2, see the ExamplePlugin’s use of WorkflowEditor
in the quick-start documentation). To do this, we passed x=1 and y=3 to our execute_synchronous call, which
provided values for the invert operation’s x and y input arguments.

Useful Methods for Modifying the Workflow

Here is a condensed version of the various ways to modify a Workflow’s operation and links. For more information,
see the API Reference.

Adding, Inspecting, and Removing Operations

Adding operations:

* add_operation — add an operation to the Workflow

* add_operations — add multiple operations to the Workflow

e insert_operation — insert an operation at a specific index in the Workflow
Inspecting operations:

* operations — get the operations currently in the Workflow
Removing operations:

* remove_operation — remove an operation from the Workflow

e clear_operations — remove all operations from the Workflow

Adding, Inspecting, and Removing Links

Adding links:

e add_link — add a link between one operation’s output and another’s input

e auto_connect_all — try to automatically connect all the operations based on input/output names
Inspecting links:

* links — get all links in the Work{flow

* operation_links — get all links connected to a specific operation in the Workflow

e get_inbound_links — get all incoming links to a specific operation in the Workflow

28 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

* get_outbound_links — get all outgoing links from a specific operation in the Workflow
Removing links:

* remove_link — remove a link from the Workflow

e clear_operation_links — remove all links for a specified operation in the Workflow

e clear_links —remove all links in the Workflow

Enabling and Disabling an Operation

It is possible to enable or disable operations. By default, all operations added to a Workflow are enabled. For more
information, see the API Reference.

Executing a Workflow

When you execute a Workflow, the operations are executed based on how they are linked together.

There are a few ways to run a Workflow: execute, execute_synchronous, and execute_all.

Synchronous Execution

As we saw in our example earlier, we can use execute_synchronous to run a Workflow as a normal snippet of Python
code. When this method is run, the we wait until we get a result back before the interpreter can continue running code.

Asynchronous Execution (Recommended)

The execute and execute_all methods are asynchronous, so they run in a separate thread. This is highly beneficial in
a GUI environment like Xi-CAM, since we don’t want to block Xi-CAM’s UI from responding, and we could potentially
offload execution onto a remote device. These methods take in several parameters; for now, we will focus on three of
these parameters:

* callback_slot — Function to execute when the results of the Workflow are ready. The callback_slot gives you
access to these results as a positional argument. This is invoked for each result. For example, let’s say you have
a crop operation that takes in an image (array) as an input parameter. You could pass in a list of images to crop
to Workflow.execute_all (), and the callback_slot will be invoked for each of the images in the passed list.
Basically, you will get a cropped image for each image sent into the workflow.

e finished_slot — Function to execute when the internal thread in the Workflow has finished its execution (all
of the operations are done). This occurs once during a Workflow’s execution.

* kwargs — Any additional keyword arguments to pass into the method; these usually correspond with the entry
operations’ inputs (as we saw in our example earlier).

The primary difference between Workflow.execute and Workflow.execute_all is that execute_all will run
multiple times for the kwargs passed in. This means the kwargs must have an iterable value. Let’s look at some
examples.

2.1. QuickStart Guide 29

Xi-CAM, Release 0+unknown

Example for execute

Let’s revisit our addition and square root workflow from earlier but make it asynchronous:

from qtpy.QtWidgets import QApplication # Only need if not running xicam

from xicam.core import execution # Only need if not running xicam

from xicam.core.execution import localexecutor # Only need if not running xicam
from xicam.core.execution import Workflow

from xicam.plugins.operationplugin import operation, output_names

gapp = QApplication([]) # Only need if not running xicam
execution.executor = localexecutor.LocalExecutor() # Only need if not running xicam

Define our operations
@operation
@output_names("'sum")
def my_add(x, y):
return x + y

@operation
@output_names("square_root")
def my_sqrt(n):
from math import sqrt
return sqrt(n)

Define callback slot (when a result is ready)
def print_result(*results):
print(results)

Define finished slot (when the workflow is entirely finished)
def finished(Q):
print("Workflow finished.™)

Instanciate operations
add_op = my_add()
sqrt_op = my_sqrt()

Create a Workflow and add our operation instances to it
workflow = Workflow()
workflow.add_operations(add_op, sqrt_op)

Link the "sum" output of add_op to the "n" input of sqrt_op
workflow.add_link(add_op, sqrt_op, "sum", "n")

Execute the workflow, sending 1 and 3 as initial inputs to add_op (the first operation)
This should give us sqrt(l + 3) -> 2.0.
workflow.execute(callback_slot=print_result,

finished_slot=finished,

x=1,

y=3)

This will print out:

30 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

({'square_root': 2.0},)
Workflow finished.

Notice that we’ve added two new functions for our callback slot and our finished slot. print_result will be called
when the workflow has finished its execution and the result is ready. finished will be called when the workflow has
finished execution for all of its input data. In this case, we have only one set of input data, x=1 and y=3.

(Also note that we have an additional import and that we are creating a QApplication; this is not needed when working
within Xi-CAM).

Example for execute_all

Now, let’s say we want to do this addition and square root workflow for multiple sets of x and y inputs. We can use
execute_all to do this:

from qtpy.QtWidgets import QApplication # Only need if not running xicam

from xicam.core import execution # Only need if not running xicam

from xicam.core.execution import localexecutor # Only need if not running xicam
from xicam.core.execution import Workflow

from xicam.plugins.operationplugin import operation, output_names

gapp = QApplication([]) # Only need if not running xicam
execution.executor = localexecutor.LocalExecutor() # Only need if not running xicam

Define our operations
@operation
@output_names('sum")
def my_add(x, y):
return x + y

@operation
@output_names('"square_root'")
def my_sqrt(n):
from math import sqrt
return sqrt(n)

Define callback slot (when a result is ready)
def print_result(*results):
print(results)

Define finished slot (when the workflow is entirely finished)
def finished(Q):
print("Workflow finished.™)

Instanciate operations
add_op = my_add()
sqrt_op = my_sqrtQ)

Create a Workflow and add our operation instances to it
workflow = Workflow()
workflow.add_operations(add_op, sqrt_op)

(continues on next page)

2.1. QuickStart Guide 31

Xi-CAM, Release 0+unknown

(continued from previous page)

o

Link the "sum" output of add_op to the "n" input of sqrt_op

workflow.add_link(add_op, sqrt_op, "sum", "n")

Execute the workflow, sending the inputs x=1,y=3; x=10,y=15; x=50,y=50.
This should give us 2.0, 5.0, and 10.0.
workflow.execute_all(callback_slot=print_result,

finished_slot=finished,

x=[1, 10, 50],

y=[3, 15, 501)

This will print out:

({'square_root': 2.0},)
({'square_root': 5.0},)
({'square_root': 10.0},)
Workflow finished.

Notice that we've just changed "execute to "execute_all’ , and we've modified the "x .
—and 'y values to be lists.

Now, we will have three executions: "x=1 y=3", "x=10 y=15", and x=50 y=50".

Each time one of these executions finishes, our callback slot "print_result is called.
When the workflow is finished executing everything, then our finished slot "finished is.
—called.

API Reference

class xicam.core.execution.Workflow(name=", operations=None)
Bases: Graph

add_link (source, dest, source_param, dest_param)

Add a link between two operations in the workflow.

Links are defined from an operation’s parameter to another operation’s parameter. This creates a connection
between two operations during execution of a workflow.

Parameters
* source (OperationPlugin) — The operation to link from.
* dest (OperationPlugin)— The operation to link to.

* source_param (str) — Name of the parameter in the source operation to link (source of
the data; output).

* dest_param (str) — Name of the parameter in the destination operation to link (where
the data goes; input).

add_operation(operation: OperationPlugin)

Add a single operation into the workflow.

add_operations (*operations: OperationPlugin)

Add operations into the workflow.

This will add the list of operations to the end of the workflow.

32 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

as_dask_graph()
process from end tasks and into all dependent ones

Returns a tuple that represents the graph as a dask-compatible graph for processing. The second element
of the tuple identifies the end node ids (i.e. nodes that do not have connected outputs).

Returns
A tuple with two-elements, the first being the dask graph, the second being the end task ids.

Return type
tuple
attach (observer: Callable)
Add an observer to the Workflow.
An observer is a callable that is called when the Workflow.notify method is called. In other words, the

observer will be called whenever the Workflow state changes; for example, links are modified, operations
are removed, etc. When notified, the observer is called.

Parameters
observer (Callable) — A callable to add from the Workflow.

auto_connect_all()

Attempts to automatically connect operations together by matching output names and input names.

Makes a best-effort to link operations based on the names of their outputs and inputs. If operation A has
an output named “image”, and operation B has an input named “image”, then A “image” will link to B
“image”. Outputs and inputs that have matching types in addition to matching names will be favored more
for the auto-connection.

If there are no outputs with matching inputs (by name), no links will be added.
clear_links()
Remove all links from the workflow, but preserve the operations.
clear_operation_links (operation, clear_outbound=True, clear_inbound=True)
Remove all links for an operation.
clear_operations()
Remove all operations and links from the workflow.
detach(observer: Callable)
Remove an observer from the Workflow.

An observer is a callable that is called when the Workflow.notify method is called. In other words, the
observer will be called whenever the Workflow state changes; for example, links are modified, operations
are removed, etc. When notified, the observer is called.

Parameters
observer (Callable) — The callable to remove from the Workflow.

disabled (operation)
Indicate if the operation is disabled in the workflow.

Parameters
operation (OperationPlugin) — Operation to check if it is disabled or not.

Returns
Returns True if the operation is disabled in the Workflow; otherwise False.

Return type
bool

2.1.

QuickStart Guide 33

Xi-CAM, Release 0+unknown

disabled_operations()

Returns the disabled operations (if any) in the workflow.

enabled (operation)
Indicate if the operation is enabled in the workflow.

Parameters
operation (OperationPlugin) — Operation to check if it is enabled or not.

Returns
Returns True if the operation is enabled in the Workflow; otherwise False.

Return type
bool

execute (executor=None, connection=None, callback_slot=None, finished_slot=None, except_slot=None,
default_exhandle=True, lock=None, fill_kwargs=True, threadkey=None, **kwargs)

Execute this workflow on the specified host. Connection will be a Connection object (WIP) keeping a
connection to a compute resource, include connection.hostname, connection.username. ..

Returns
A concurrent.futures-like qthread to monitor status. The future’s callback_slot receives the
result.

Return type
QThreadFuture

execute_all (connection=None, executor=None, callback_slot=None, finished_slot=None, yield_slot=None,
except_slot=None, default_exhandle=True, lock=None, fill_kwargs=True, threadkey=None,
**kwargs)

Execute this workflow on the specified host. Connection will be a Connection object (WIP) keeping a
connection to a compute resource, include connection.hostname, connection.username. ..

Each kwargs is expected to be an iterable of the same length; these values will be iterated over, zipped, and
executed through the workflow.

Returns
A concurrent.futures-like qthread to monitor status. The future’s callback_slot receives the
result.

Return type
QThreadFuture
fill_kwargs (**kwargs)

Fills in all empty inputs with names matching keys in kwargs.

get_inbound_links (operation)

Returns the links connected to the operation given (linked inputs of the operation).

The returned dict represents all operations that are connected to operation. Links are represented as a list
of 2-element tuples, where the first element of the tuple is another operation’s output parameter, and the
second element of the tuple is operation’s input parameter.

Using keys() will give all of the operations that connect to operation. Using values() will give all of the
links from each operation to operation.

Parameters
operation (OperationPlugin) — Operation to get incoming links for (some operation ->
operation).

34 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

Returns
Returns a dictionary defining all of the links from any connected operations to operation.

Return type
defaultdict

get_outbound_links (operation)

Returns the links connected from the operation given (linked outputs of the operation).

The returned dict represents all the operations that operation connects to. Links are represented as a list
of 2-element tuples, where the first element of the tuple is operation’s output parameter, and the second
element of the tuple is another operation’s input parameter.

Using .keys() on the returned dict will give all of the operations that operation connects to. Using .values()
on the returned dict will give all of the links from operation to each operation.

Parameters

operation (OperationPlugin) — Operation to get outgoing links for (operation -> some
operation).

Returns
Returns a dictionary defining all of the links from operation to any connected operations.

Return type
defaultdict

insert_operation(index: int, operation: OperationPlugin)
Insert an operation at a specific index in the workflow.

Parameters

¢ index (int) — Index where to insert the operation. 0 will add at the beginning; -1 will add
to the end.

e operation (OperationPlugin)— Operation to insert.
links ()

Returns all the links defined in the workflow.

Returns a list of tuples, each tuple representing a link as follows: source operation, destination operation,
source parameter, destination parameter.

Note that the links are shown as outbound links.

Returns
Returns a list of the links (defined as outbound links) in the workflow.

Return type
list

notify()
Notify the observers; the observers will be called.
operation_links (operation: OperationPlugin)

Returns the outbound links for an operation.

Returns a list of tuples, each tuple representing a link as follows: operation, destination operation, operation
source parameter, destination parameter.

Returns
Returns a list of the links (defined as outbound links) for operation.

. QuickStart Guide 35

Xi-CAM, Release 0+unknown

Return type
list

property operations
Returns the operations of this workflow.

remove_link (source, dest, source_param, dest_param)
Remove a link between two operations.

Parameters
» source (OperationPlugin) — The source operation to remove a link from.
¢ dest (OperationPlugin) — The destination operation to remove a link from.
e source_param (str) — Name of the source parameter that is defining the link to remove.
¢ dest_param (str)— Name of the destination parameter that is defining the link to remove.

remove_operation(operation, remove_orphan_links=True)
Remove an operation from the workflow.

Parameters
¢ operation (OperationPlugin)— Operation to remove from the workflow.

e remove_orphan_links (bool) — If True, removes all links that link to the operation to
be removed. If False, does not remove any links for the operation and returns the removed
operations links dict (default is True).

Returns
By default (remove_orphan_links is True), returns None. Otherwise, returns the links for the
removed operation.

Return type
defaultdict

set_disabled (operation: OperationPlugin, value: bool = True, remove_orphan_links: bool = True,
auto_connect_all: bool = True)
Set an operation’s disabled state in the workflow.

By default when disabling an operation, links connected to the operation will be removed (re-
move_orphan_links would be True). If value is False (re-enabling an operation), then no links are changed.

Parameters
e operation (OperationPlugin)— The operation whose disabled state is being modified.
* value (bool) —Indicates the disabled state (default is True, which disables the operation).

¢ remove_orphan_links (bool) — If True and value is True, removes the links connected
to the operation. Otherwise, no links are changed (default is True).

e auto_connect_all (bool) — If True, then a best-effort attempt will be made to try to
reconnect the operations in the workflow (default is True). See the Graph.auto_connect_all
method for more information.

Returns
Returns a list of any orphaned links for an operation that is set to disabled. Default behavior
will return an empty list (when remove_orphan_links is True). If enabling an operation (value
is False), then an empty list is returned, as no links are changed.

Return type
list

36 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

stage (connection)

Stages required data resources to the compute resource. Connection will be a Connection object (WIP)
keeping a connection to a compute resource, include connection.hostname, connection.username. . .

Returns
A concurrent.futures-like qthread to monitor status. Returns True if successful

Return type
QThreadFuture

toggle_disabled(operation: OperationPlugin, remove_orphan_links=True, auto_connect_all=True)

Toggle the disable state of an operation.

By default, when an operation is toggled to a disabled state, any links connected to the operation will be
removed.

Parameters
» operation (OperationPlugin)— The operation to toggle disable state for.

¢ remove_orphan_links (bool) — If True, when the operation’s toggle state is toggled to
disabled, any links connected to the operation will be removed (default is True).

Returns
Returns a list of any orphaned links for an operation. Default behavior will return an empty
list. A non-empty list can be returned when remove_orphan_links is False and the connected
operation is toggled to disabled.

Return type
list

validate()
Validate all of: - All required inputs are satisfied. - Connection is active. - ?

Returns
True if workflow is valid.

Return type
bool

2.1.4 Install Xi-CAM

If you haven’t already installed Xi-CAM, follow the installation instructions for your operating system:

Installing Xi-CAM for Linux

Installing Xi-CAM requires a few system components to be installed. After successfully installing these components
and Xi-CAM, you will be ready to start developing Xi-CAM plugins!

2.1. QuickStart Guide 37

Xi-CAM, Release 0+unknown

Install python3

First, ensure that you have python3.8 installed on your system.

Consult your specific distribution’s package manager for installing python3.

Create and Activate a Virtual Environment

Creating a virtual environment allows you to install and uninstall packages without modifying any packages on your
system. This is highly recommended.

There are a couple of ways to create a virtual environment:
1. via the venv module provided with python3
2. via conda (you will need to install this from anaconda.org or miniconda.org)

In the commands below, we will create a new environment called xicam in your home directory, and then activate the
environment.

Once an environment is activated, any packages installed through pip will be installed into this sequestered xicam
environment. (If using conda, you can install either with pip or conda.)

virtualenv

If you would like to create a virtual environment, run the following:

cd ~
python3 -m venv xicam
source xicam/bin/actviate

conda

If you would like to create an environment through conda, run the following:

cd ~
conda create -n xicam python=3.8
conda activate xicam

Install Python Qt Bindings

Xi-CAM depends on a GUI application framework called Qt; you will need to install one of the python bindings for Qt
(PyQt5 or PySide?2) in order to run Xi-CAM.

Make sure that you have activated the xicam environment.

For example, you can install the PyQtS pip package as follows:

pip install PyQt5

38 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

Install the Xi-CAM package

Now that we have activated a new xicam environment and installed PyQtS, we can install Xi-CAM:

pip install xicam

To ensure everything is installed correctly, you can run Xi-CAM as follows:

xicam

Where Do | Go from Here?

You are now ready to start developing plugins for Xi-CAM!

To learn about developing plugins for Xi-CAM, see the Quick Start Guide.

Installing Xi-CAM for MacOS

Installing Xi-CAM requires a few system components to be installed. After successfully installing these components
and Xi-CAM, you will be ready to start developing Xi-CAM plugins!

Install python3

First, ensure that you have python3.8 installed on your system.

The quickest way to do this is by downloading and running the python.org installer for python3. The python3.8 macOS
64-bit installer can be found here.

Alternatively, you can install XCode and homebrew to manage multiple versions of python on your system.

Create and Activate a Virtual Environment

Creating a virtual environment allows you to install and uninstall packages without modifying any packages on your
system. This is highly recommended.

There are a couple of ways to create a virtual environment:
1. via the venv module provided with python3
2. via conda (you will need to install this from anaconda.org or miniconda.org)

Using the Terminal application, we will create a new environment called xicam in your home directory, and then
activate the environment.

Once an environment is activated, any packages installed through pip will be installed into this sequestered xicam
environment. (If using conda, you can install either with pip or conda.)

2.1. QuickStart Guide 39

https://www.python.org/downloads/release/
https://www.python.org/downloads/release/
https://docs.python-guide.org/starting/install3/osx/

Xi-CAM, Release 0+unknown

virtualenv

If you would like to create a virtual environment, run the following:

cd ~
python3 -m venv xicam
source xicam/bin/actviate

conda

If you would like to create an environment through conda, run the following:

cd ~
conda create -n xicam python=3.8
conda activate xicam

Install Python Qt Bindings

Xi-CAM depends on a GUI application framework called Qt; you will need to install one of the python bindings for Qt
(PyQt5 or PySide?2) in order to run Xi-CAM.

Make sure that you have activated the xicam environment.

For example, you can install the PyQtS pip package as follows:

pip install PyQt5

Install the Xi-CAM package

Now that we have activated a new xicam environment and installed PyQtS, we can install Xi-CAM:

pip install xicam

To ensure everything is installed correctly, you can run Xi-CAM as follows:

xicam

Where Do | Go from Here?

You are now ready to start developing plugins for Xi-CAM!

To learn about developing plugins for Xi-CAM, see the Quick Start Guide.

40 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

Installing Xi-CAM for Windows

Installing Xi-CAM requires a few system components to be installed. After successfully installing these components
and Xi-CAM, you will be ready to start developing Xi-CAM plugins!

Install python3

On Windows, a great way to manage python installations and packages is through Anaconda. Follow their Windows
installation instructions, which will install the conda package manager, Anaconda, Anaconda Prompt, and Anaconda
Navigator.

* Anaconda — A package that provides conda and several common python packages
* Anaconda Prompt — A command line shell for managing conda environments and installing packages
* Anaconda Navigator — A GUI for managing conda environments and installing packages

Open the Anaconda Prompt program.

Then, create a new environment called xicam. This creates a sequestered space on your system to install xicam and its
dependencies without modifying any of your system’s libraries.

Next, activate the environment. This tells the system to use the libraries and applications inside the environment.

conda create -n xicam python=3.8
conda activate xicam

Install Python Qt Bindings

Xi-CAM depends on a GUI application framework called Qt; you will need to install one of the python bindings for Qt
(PyQt5 or PySide?2) in order to run Xi-CAM.

Make sure that you have activated the xicam environment.

In your open Anaconda Prompt window, install the pyqt conda package as follows:

conda install pyqt

Install the Xi-CAM package

Now that we have activated a new xicam environment and installed pyqt, we can install Xi-CAM using a python
package management tool called pip. Run the following in your open Anaconda Prompt.

pip install xicam

To ensure everything is installed correctly, you can run Xi-CAM as follows:

xicam

2.1. QuickStart Guide 41

https://docs.anaconda.com/anaconda/install/windows/
https://docs.anaconda.com/anaconda/install/windows/

Xi-CAM, Release 0+unknown

Where Do | Go from Here?

You are now ready to start developing plugins for Xi-CAM!

To learn about developing plugins for Xi-CAM, see the Quick Start Guide.

Copyable Instructions

Anaconda Prompt:

cd ~

conda create -n xicam

conda activate xicam

conda install -c conda-forge pyqt

pip install xicam

xicam

2.1.5 Overview

In this guide we will:
» Explore the main window of Xi-CAM
* Download and install an Example Plugin
* Configure a sample catalog so we can load data

* Explore the Example Plugin

Key Concepts
Here is a quick overview of some concepts that will be explored in this guide. Note that more documentation is available
for each of these concepts.

We have one GUIPlugin (ExamplePlugin) - this will be a plugin that you will be able to select and see within Xi-
CAM. The layout of the GUIP1ugin is defined by a GUILayout.

We have a few OperationPlugins (invert and random_noise) - These plugins are basically functions that take in
data and output derived data.

We also need a way to actually run data through the operations. To do this, we have a Workflow (ExampleWorkflow)
- this contains linked operations to execute (can be thought of like a pipeline).

42 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

2.1.6 Looking at Xi-CAM’s Main Window

Let’s look at what the main window in Xi-CAM looks like first:

Xi-cam

C inStalled pluging

Catalog Viewer Example Plugin GUILayout Demo

(\efttop)

\Applied Math
‘P rev e W
w- dg):\. Welcome to Xi-cam
'l i, R. N .J.-glr_wlc:hrotronRad.zs 261

Dodio. Qespurce Sime mmader, op np dget
Browser on loodup

(leff)

Fig. 2: The main window of Xi-CAM after it has finished loading.

When Xi-CAM finishes loading, we see the window as shown above. Any installed GUIPlugins will be visible (and
selectable) at the top (note that you will probably not have any installed yet).

We can also see some of the default widgets provided:
* a welcome widget in the center of the window

* apreview widget in the top-left (lefttop) of the window, which shows a sample of selected data in the data browser
widget

 adata browser widget on the left of the window, which can show available databroker catalogs

2.1. QuickStart Guide 43

Xi-CAM, Release 0+unknown

Quick GUILayout Overview

We mentioned the terms center, lefttop, and left above. These correspond to positions in a GUILayout. Here is a quick
overview of how the Xi-CAM main window is organized:

Xi-cam

Catalog Viewer Example Plugin GUILayout Dem

top righttop

center

leftbottom bottom rightbottom

Fig. 3: The layout of Xi-CAM’s main window.

You can see that the layout of Xi-CAM follows a 3x3 grid, where each section is named according to its orientation in
relation to the center of the window.

(Note that any GUIPlugins you create will have one or more of these GUILayouts).

44 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

Xi-CAM Menu Bar

At the top of the main window, there is a menu bar that contains some helpful items.
In the File item you can find Settings for Xi-CAM. This includes things like:
* Logging configuration - where to find the log files, what type of logging record. ..
* Theme - change the appearance of Xi-CAM
* Device settings - allows managing different devices (detectors) (if you have Acquire or SAXS installed)

In the Help item you can find a link to the Xi-CAM documentation, a way to contact the development team, and
versioning / licensing information for Xi-CAM.

2.1.7 Download and Install the ExamplePlugin

Now that we have looked at the main window and its layout, let’s download the Example Plugin.

cd ~
git clone https://github.com/Xi-CAM/Xi-CAM.ExamplePlugin
cd Xi-CAM.ExamplePlugin

What’s Inside the ExamplePlugin Repository

The repository will contain the following:

X1-CAM.ExamplePlugin

configure
349497da-ead2-4015-8201-4719f8a2de69.msgpack
catalog.yml
README. txt
setup catalog.py

LICENSE.md

README .md

setup.py

xicam

L — exampleplugin
exampleplugin.py
__init_ .py
operations.py
workflows.py

Fig. 4: The contents of the ExamplePlugin repo when you clone it.

At the top there are a few files and directories:
* setup.py - describes how to install this as a python package; also used to register plugins (via entry points).

» configure - special directory for this example, helps set up a catalog

2.1. QuickStart Guide 45

Xi-CAM, Release 0+unknown

* xicam - directory that acts as a python namespace package
In xicam, there is a exampleplugin subpackage that contains:
e __init__.py - makes exampleplugin a python package; also exposes the ExamplePlugin class
* exampleplugin.py - module that contains the ExamplePlugin GUI plugin
e operations.py - module that contains the example OperationPlugins

* workflows.py - module that contains the example Workflows

How Do I Install the Example Plugin?

So far, we have only downloaded the Example Plugin - we still need to install it so Xi-CAM can find it and load it.

We can install downloaded plugins using a pip editable install:

pip install -e .

This uses Python’s entry points mechanism to register plugins for Xi-CAM to see.

Exploring the Example Plugin Interface

When you run xicam, you should now see the Example Plugin available at the top right of the main window.
Select it and you should the Example Plugin layout:

In the center, we have a CatalogView that will be used to display loaded data. On the right, there is a WorkflowEditor
that shows the operations in the workflow and allows for running the workflow. At the bottom, there is a DynImageView,
which will be used to display the results data.

2.1.8 How Do | Load Data?

Now that we have the Example Plugin installed, we need to have data to load into it.
For purposes of this guide, we will be configuring a catalog called “example_catalog.”

For more information, see the Bluesky DataBroker documentation.

Configuring a Catalog

There is a configure/ directory in the repository we cloned. This contains a catalog configuration file, a msgpack
catalog, and a script.

Feel free to inspect the script before you run it; it will attempt to set up a msgpack catalog source for Xi-CAM to use:

cd configure
python setup_catalog.py
cd ..

46 Chapter 2. Developer Documentation

https://blueskyproject.io/databroker/v2/index.html

Xi-CAM, Release 0+unknown

Catalog Viewer Example Plugin GUILayout Demo

CotolooNiew

u

Parameter Value

(cenYec)

Local Databroker =

Catalog: example-catalog

Since:
Until:

Custom Query:

D‘ﬁﬁ T a0, e\ Q\J\J

(botom)

Menu

Fig. 5: The Example Plugin. Uses a CatalogView, DynlmageView, and WorkflowEditor as widgets in its layout.

Workflow

Run Automatically |Rub WorkFlow

2.1. QuickStart Guide

47

Xi-CAM, Release 0+unknown

Loading a Catalog from the Data Resource Browser

Now that we’ve configured the catalog, let’s make sure that Xi-CAM can see it.
When loading a catalog into Xi-CAM, you must have a GUIPlugin active. Let’s select our “Example Plugin.”

Look at the Data Resource Browser on the left hand side of the window. The Data Resource Browser gives us access
to two different types of data browsers by default:

* abluesky browser for catalogs (adapted from work done by NSLS-II)
* alocal file browser

After configuring our example catalog, the bluesky catalog browser should have the text “example_catalog” in the
Catalog drop-down box.

Notice that it also has two text inputs, Since and Until. Our example catalog was created in the beginning of 2020. In
order to see the data (catalogs) our “example_catalog” contains, we need to change the Since text input.

Change it’s value to “2020-01-01”. This will now look for any data that was created since the start of 2020. After
making this change, the example_catalog will be re-queried for data created within these new dates.

You should see a catalog show up in the table below with the id 349497da. If you single-click the row in the table to
highlight it, more information and a preview of the data should be shown as well. You can then open it with the “Open”
button.

You should see Clyde the cat loaded into the center CatalogView.

Running a Workflow
Our Example Plugin has one internal workflow, the ExampleWorkflow. The ExampleWorkflow contains two
OperationPlugins (operations):

e invert - inverts its input image

* random_noise - applies random noise to its input image, has a “strength” parameter to define how much noise
to apply to the image

This workflow is exposed in the GUI with a WorkflowEditor on the right side of the layout.
Now that we have loaded some data, let’s run our workflow by clicking the “Run Workflow” button.
You should see an inverted picture with some random noise added to it.

Note that you can adjust the amount of random noise by selecting the “random_noise” text in the WorkkflowEditor,
then changing the value of “strength” that shows up in the parameter tree above.

2.1.9 Examining the Code

Let’s take a quick look at how the code is implemented for our Example Plugin.
The code for this particular plugin is organized into three modules:
» exampleplugin.py - Defines the ExamplePlugin (the GUIPlugin)
e operations.py - Defines two OperationPlugins: invert and random_noise

* workflows.py - Defines an ExampleWorkflow with the invert and random_noise operations

48 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

Catalog Viewer Example Plugin GUILayout Demo
< .

Paramete

since:
until:
Custom Query:

Unique ID Transient Scan ID |
349497da 1 co

Run Automatically RunV

-
]

Fig. 6: Here we see catalog 349497da in the DataResourceBrowser. It has one stream (primary) with 10 events in it.
A preview shows the first frame of the data, and the opened data appears in the center.

2.1. QuickStart Guide 49

Xi-CAM, Release 0+unknown

Catalog Viewer Example Plugin GUILayout Demo
< .

Param

ir
random noise
Menu
Until:
Custom Query:

Unique ID Transient Scan ID
349497da 1

atically 'RunV

Fig. 7: The result data after running the workflow. Note that the color lookup table can be changed by right-clicking
the gradient bar.

50 Chapter 2. Developer Documentation

Xi-CAM, Release 0+unknown

operations.py

Here we define OperationPlugins (or operation)

An operation can be thought of as a function; input data is sent into the operation, and the operation generates some
output with the given input.

When defining an OperationPlugin, we use Python decorators (the @ seen in the code). At the very least, you must
provide the @operation and @output_names decorators for an operation.

workflows.py

Here we define an ExampleWorkflow.

We add our two operations to the ExampleWorkflow, then connect them so that invert’s “output_image” value is
sent to random_noise’s input image argument.

exampleplugin.py

Here we define the gui plugin ExamplePlugin.
We provide a name for the plugin, which will display as “Example Plugin” in Xi-CAM.

We define our widgets, our layout, and any internal objects we might need (like the workflow) inside of our __init__
method. We connect the WorkflowEditor’s sigRunWorkflow signal to our run_workflow method. This means
whenever “Run Workflow” is clicked in the WorkflowEditor, our ExamplePlugin’s run_workflow method will be
called.

We also define a results_ready method that will be called whenever our workflow has finished executing its opera-
tions. Providing callback_slot=self.results_ready in our execute call sets up this connection for us.

2.2 Entry Points

An entry point is a mechanism that can be used to make objects discoverable by a common interface / name.

2.2.1 Xi-CAM Entry Points

In Xi-CAM, you can define entry points and then run pip install -e . in your plugin package directory to register
plugins. This allows Xi-CAM to see your plugins when it loads. Entry points are defined in setup.py files, in the
entry_points key.

Let’s look at an example repository and setup.py:

setup.py
xicam/
myplugin/
__init__.py - defines MyGUIPlugin (also marks this directory as a.
—Python module)
operations/
__init__.py - marks this directory as a Python module
edge_detection.py - contains edge detection operations (laplace and sobel)
workflows/

(continues on next page)

2.2. Entry Points 51

Xi-CAM, Release 0+unknown

(continued from previous page)

__init__.py - (marks this directory as a Python module)
myworkflow.py - defines MyWorkflow.py

Here’s what our entry_points might look like in setup.py:

entry_points = {
"xicam.plugins.GUIPlugin": ["myguiplugin = xicam.myplugin:MyGUIPlugin"],
"xicam.plugins.OperationPlugin": [
"laplace_operation = xicam.myplugin.operations.edge_detection:laplace",
"sobel_operation = xicam.myplugin.operations.edge_detection:sobel"

1,

As seen above, entry_points is a dictionary, where each key is an entry point and each value is a list of objects /
types being registered to that entry point.

The syntax is: "entry point name": ["some_identifier = package.subpackage.module:ClassName"].

In this case, we are registering MyGUIPlugin to the xicam.plugins.GUIPlugin entry point. Similarly, we are
registering the laplace and sobel operations to the xicam.plugins.OperationPlugin entry point.

Note that Workflows are not registered in this way; they are not Xi-CAM plugins.

Whenever you modify entry points, you must reinstall your package. You can do this by running pip install
-e . in your package directory.

When Xi-CAM loads, it will see the xicam.plugins.GUIPlugin entry point key and load in MyGUIPlugin defined
(in the value). Similarly, Xi-CAM will see the xicam.plugins.OperationPlugin entry point key and load in the
laplace and sobel operations.

2.2.2 More Information

For more information about entry points, see the following:
* https://entrypoints.readthedocs.io/en/latest/
* https://packaging.python.org/specifications/entry-points/
* https://amir.rachum.com/blog/2017/07/28/python-entry-points/

2.3 Data ingestion in Xi-CAM

2.3.1 What is an ingestor?

The ingestor design is specified by the Databroker team to provide an entrypoint for data generated external from the
Bluesky environment. An ingestor is a Callable that accepts a URI (often a local file path) and yields (name, doc)
pairs. The yielded data follows the Bluesky event-model structure (see event-model documentation). Synthesizing
these event-model documents is made easier with the RunBuilder (see Bluesky-Live documentation).

52 Chapter 2. Developer Documentation

https://github.com/danielballan/sniffers_and_ingestors/
https://blueskyproject.io/event-model/data-model.html
https://github.com/bluesky/bluesky-live

Xi-CAM, Release 0+unknown

2.4 Resources

2.4.1 Example Xi-CAM Plugins

* Xi-CAM CatalogViewer Plugin - Example of a simple single-stage GUIPlugin.
¢ Xi-CAM Log Plugin - Example of another simple single-stage GUIPlugin.

Xi-CAM BSISB Plugin - Example of a multi-stage GUIPlugin with more functionality.

Xi-CAM NCEM Plugin - Another example of a multi-stage GUIPlugin with more functionality.

2.4.2 Git

* Try GitHub - Landing page for some introductions and resources about git and GitHub.

* Git Handbook - An introduction to git and GitHub.

2.4.3 NSLS-II

Useful resources about NSLS-II software that Xi-CAM uses.
» Databroker Catalog - Describes how to configure and use a databroker catalog.
e Event Model - Describes an event-based data model.

* Bluesky Documents - Describes what a bluesky document is.

2.4.4 Python

Here are a few resources regarding object-oriented programming with Python3. Feel free to look through these or even
through resources you find on your own if you are interested.

* Python OOP Introduction and Tutorial -
* Presentation on OOP in Python -
e Python OOP

2.4.5 Qt

Qtis a framework written in C++ for developing graphical user interfaces. PySide2 and PyQt5 are two different python
bindings to the Qt C++ API. QtPy is a wrapper that allows for writing python Qt code with either PyQt5 or PySide2
installed.

Xi-CAM uses QtPy to interact with different Python bindings to Qt. QtPy allows you “to write your code as if you were
using PySide2 but import Qt modules from qtpy instead of PySide2 (or PyQt5)”. The references below show PySide2
examples and documentation; when writing a Xi-CAM plugin, make sure to use the qtpy modules when importing.

* PySide2 Documentation - Documentation for PySide2. Since the QtPy API resembles PySide2, this documen-
tation is helpful for looking up python Qt modules and classes that you may use.

e PyQt5 GUI Tutorial - Introductory tutorial for learning the basic concepts of Qt. Note: this tutorial is written for
PyQt5, remember to import from qtpy instead of PyQt5 or PySide2 when writing code for Xi-CAM.

» PySide2 Simple Clickable Button - Short tutorial that describes the concept of signals and slots in Qt and shows
how to create a button that responds to clicking.

2.4. Resources 53

https://github.com/Xi-CAM/Xi-cam.CatalogViewer
https://github.com/Xi-CAM/Xi-CAM.plugins.Log
https://github.com/Xi-CAM/Xi-cam.BSISB
https://github.com/Xi-CAM/Xi-CAM.NCEM
https://try.github.io/
https://guides.github.com/introduction/git-handbook/
https://nsls-ii.github.io/databroker/v2/index.html
https://nsls-ii.github.io/architecture-overview.html
https://nsls-ii.github.io/bluesky/documents.html
https://realpython.com/python3-object-oriented-programming/
https://www.cs.colorado.edu/~kena/classes/5448/f12/presentation-materials/li.pdf
https://www.python-course.eu/python3_object_oriented_programming.php
https://www.qt.io/what-is-qt/?utm_campaign=Navigation%202019&utm_source=megamenu
https://pypi.org/project/QtPy/
https://doc.qt.io/qtforpython/
https://build-system.fman.io/pyqt5-tutorial
https://wiki.qt.io/Qt_for_Python_Tutorial_ClickableButton

Xi-CAM, Release 0+unknown

* PyQtGraph - Documentation for the pyqtgraph package, which relies on Qt and provides basic data visualization
(plotting) and various widgets (helpful for writing Xi-CAM GUIPlugins).

54 Chapter 2. Developer Documentation

http://pyqtgraph.org/documentation/

CHAPTER
THREE

LINKS

* Xi-CAM GitHub Organization

55

https://github.com/Xi-CAM

Xi-CAM, Release 0+unknown

56 Chapter 3. Links

CHAPTER
FOUR

INDICES AND TABLES

* genindex
* modindex

¢ search

57

Xi-CAM, Release 0+unknown

58 Chapter 4. Indices and tables

A

add_link () (xicam.core.execution.Workflow method),

32

add_operation() (xicam.core.execution. Workflow
method), 32

add_operations() (xicam.core.execution. Workflow
method), 32

appendCatalog() (xicam.plugins.guiplugin. GUIPlugin
method), 14

as_dask_graph() (xicam.core.execution. Workflow
method), 32

attach() (xicam.core.execution.Workflow method), 33
auto_connect_all () (xicam.core.execution.Workflow
method), 33

C

categories() (in module Xi-
cam.plugins.operationplugin), 19
clear_links() (xicam.core.execution. Workflow
method), 33
clear_operation_links()
cam.core.execution. Workflow method), 33
clear_operations() (xicam.core.execution.Workflow

(xi-

method), 33
D
describe_input () (in module Xi-
cam.plugins.operationplugin), 20
describe_output () (in module Xi-

cam.plugins.operationplugin), 20
detach() (xicam.core.execution. Workflow method), 33

disabled (xicam.plugins.operationplugin.OperationPlugin

attribute), 25

disabled() (xicam.core.execution.Workflow method),
33

disabled_operations() (xi-
cam.core.execution. Workflow method), 33

INDEX

E

enabled() (xicam.core.execution.Workflow method), 34

execute() (xicam.core.execution.Workflow method), 34

execute_all() (xicam.core.execution. Workflow
method), 34

F

fill_kwargs()
method), 34

filled_values (xicam.plugins.operationplugin.OperationPlugin
attribute), 24

fixable (xicam.plugins.operationplugin. OperationPlugin
attribute), 24

fixed (xicam.plugins.operationplugin.OperationPlugin
attribute), 24

fixed () (in module xicam.plugins.operationplugin), 21

G

get_inbound_links() (xicam.core.execution.Workflow
method), 34
get_outbound_links()
cam.core.execution. Workflow method), 35
GUILayout (class in xicam.plugins.guiplugin), 14
GUIPlugin (class in xicam.plugins.guiplugin), 14

H
hints (xicam.plugins.operationplugin.OperationPlugin
attribute), 25

(xicam.core.execution. Workflow

(xi-

input_descriptions (xi-
cam.plugins.operationplugin. OperationPlugin
attribute), 25

input_names (xicam.plugins.operationplugin. OperationPlugin
attribute), 24

input_names () (in module Xi-
cam.plugins.operationplugin), 21

display_name (xicam.plugins.operationplugin.OperationPlugi

attribute), 25
display_name() (in module Xi-
cam.plugins.operationplugin), 21

1r%grt_operation() (xicam.core.execution.Workflow
method), 35

59

Xi-CAM, Release 0+unknown

L

limits (xicam.plugins.operationplugin.OperationPlugin
attribute), 24

limits Q) (in module xicam.plugins.operationplugin), 22

links () (xicam.core.execution. Workflow method), 35

M

T

toggle_disabled()
method), 37

(xicam.core.execution. Workflow

units (xicam.plugins.operationplugin.OperationPlugin
attribute), 25

message (xicam.plugins.operationplugin.ValidationError units(Q) (in module xicam.plugins.operationplugin), 23

attribute), 26

N

notify() (xicam.core.execution.Workflow method), 35

O

\Y

validate() (xicam.core.execution.Workflow method),
37

ValidationError (class in
cam.plugins.operationplugin), 26

Xi-

operation (xicam.plugins.operationplugin. ValidationErroNisible (xicam.plugins.operationplugin. OperationPlugin

attribute), 26
operation() (in module
cam.plugins.operationplugin), 18
operation_links() (xicam.core.execution.Workflow
method), 35
OperationPlugin (class in
cam.plugins.operationplugin), 24
operations (xicam.core.execution.Workflow property),
36
(xicam.plugins.operationplugin.OperationPlugin
attribute), 24
opts () (in module xicam.plugins.operationplugin), 23
output_descriptions (xi-
cam.plugins.operationplugin. OperationPlugin
attribute), 25

Xi-

Xi-

opts

attribute), 25

visible() (in module xicam.plugins.operationplugin),
23

W

Workflow (class in xicam.core.execution), 32

output_names (xicam.plugins.operationplugin.OperationPlugin

attribute), 25
output_names() (in module
cam.plugins.operationplugin), 19

Xi-

output_shape (xicam.plugins.operationplugin.OperationPlugin

attribute), 25
output_shape() (in module
cam.plugins.operationplugin), 22

Xi-

R

remove_link()
method), 36

remove_operation() (xicam.core.execution.Workflow
method), 36

(xicam.core.execution. Workflow

S

set_disabled()
method), 36

stage() (xicam.core.execution.Workflow method), 36

stages (xicam.plugins.guiplugin.GUIPlugin property),
14

(xicam.core.execution. Workflow

60

Index

	Getting Started
	Developer Documentation
	QuickStart Guide
	GUIPlugin Documentation
	What Is A GUIPlugin?
	Where is GUIPlugin?
	What Does a GUIPlugin Look Like?

	How Do I Create a GUIPlugin?
	What is cookiecutter?
	Install cookiecutter
	Run cookiecutter with the Xi-CAM GUIPlugin Template

	Installing Your GUIPlugin
	Selecting and Activating a GUIPlugin
	How is MyPlugin Implemented?
	What Is a Stage?
	What Is a GUILayout?
	What Is a QLabel?

	How Do I Load Data into My Plugin?
	Configuring a Databroker Catalog
	Moving the msgpack Data
	Updating catalog.yml
	Making catalog.yml Discoverable

	Implementing appendCatalog

	API Reference

	OperationPlugin Documentation
	What Is an OperationPlugin?
	Where Is OperationPlugin?
	What Does an OperationPlugin Look Like?
	Default Input Values
	Required and Highly-Used Decorators
	Type Hinting (Optional)
	Example

	How Do I Use an OperationPlugin?
	API Documentation

	Workflow Documentation
	What Is a Workflow?
	Where Is Workflow?
	What Does a Workflow Look Like?
	Example

	Useful Methods for Modifying the Workflow
	Adding, Inspecting, and Removing Operations
	Adding, Inspecting, and Removing Links
	Enabling and Disabling an Operation

	Executing a Workflow
	Synchronous Execution
	Asynchronous Execution (Recommended)
	Example for execute
	Example for execute_all

	API Reference

	Install Xi-CAM
	Installing Xi-CAM for Linux
	Install python3
	Create and Activate a Virtual Environment
	virtualenv
	conda

	Install Python Qt Bindings
	Install the Xi-CAM package
	Where Do I Go from Here?

	Installing Xi-CAM for MacOS
	Install python3
	Create and Activate a Virtual Environment
	virtualenv
	conda

	Install Python Qt Bindings
	Install the Xi-CAM package
	Where Do I Go from Here?

	Installing Xi-CAM for Windows
	Install python3
	Install Python Qt Bindings
	Install the Xi-CAM package
	Where Do I Go from Here?
	Copyable Instructions

	Overview
	Key Concepts

	Looking at Xi-CAM’s Main Window
	Quick GUILayout Overview
	Xi-CAM Menu Bar

	Download and Install the ExamplePlugin
	What’s Inside the ExamplePlugin Repository
	How Do I Install the Example Plugin?
	Exploring the Example Plugin Interface

	How Do I Load Data?
	Configuring a Catalog
	Loading a Catalog from the Data Resource Browser
	Running a Workflow

	Examining the Code
	operations.py
	workflows.py
	exampleplugin.py

	Entry Points
	Xi-CAM Entry Points
	More Information

	Data ingestion in Xi-CAM
	What is an ingestor?

	Resources
	Example Xi-CAM Plugins
	Git
	NSLS-II
	Python
	Qt

	Links
	Indices and tables
	Index

